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From a purely scientific viewpoint, the members of the various working groups concerned
with programming language standardization really ought to report to their parent com-
mittees that their assigned task is impossible without a major prior effort by the technical
community ; and that this prior effort would have to produce an effective procedure for de-
scribing the languages that are of concern.

Thomas B. Steel, Jr., 1967 [S4]

The current use of formal definitions of programming languages is very limited,
largely because of a lack of fully developed techniques and because of user
resistance to the poor human engineering of the definitions themselves.
Nevertheless, usable formal definitions are essential for the effective design

of programming languages and their orderly development and standardization.

We present four well-known formal definition techniques: W-grammars,
Production Systems with an axiomatic approach to semantics, the Vienna
Definition Language, and Attribute Grammars. Each technique is described
tutorially and examples are given; then each technique is applied to define the same
small programming language.

These definitions provide a usable basis for a critical discussion of the relative
clarity of the different methods. This leads to a review of some of the debatable issues
of formal definition. Among these issues are the advantages, if any, to the use of an
underlying machine model, the precise nature of a valid program, the relative
merits of generative and analytic definitions, and the place of implementation-
defined features in the definition.

Finally, a case is made for the importance of formal definitions and the need for
a significant effort to make definitions suitable for human comprehension.
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INTRODUCTION

The programming language Tower of Babel is well known. Less discussed is the Tower of
Metababel, symbolic of the many ways that programming languages are described and de-
fined. The methods used range all the way from natural language to the ultramathematical.
The former are subject to all the vagaries and inconsistencies that result from the use of
normal prose; the latter frequently have their meaning hidden under abstruse notation.

Often a mixture of methods is used. The formal part is generally limited to the use of
Backus Naur Form (BNF), or some equivalent, to define the context-free aspects of the
language. The context-sensitive restrictions and the semantics are then defined by some
other method, usually prose. In this paper, we confine ourselves to completely formal tech-
niques.

Computer science has already made considerable progress without having a generally
accepted formal technique for defining programming languages, just as the English language
was well developed before the advent of Johnson’s Dictionary of the English Language in 1755.
However, the lack of general use of formal definitions has not been without severe conse-
quences. For example:

® Language designers do not have good tools for careful analysis of their decisions.
o Standardization efforts have been impeded by a lack of an adequate formal notation.
® Degpite the fact that standards exist for programming languages, it is still risky to
move a program from one implementation to another, even on the same hardware.
® It is impossible to make a contract with a vendor for a compiler and be assured that
the product will be an exact implementation of the language.

o It is difficult to write reference manuals and tutorial texts without glossing over
critical details that may change from implementation to implementation.

® The answers to detailed questions about a programming language frequently have to
be obtained by trying an implementation or hoping for a consensus from several im-
plementations.

Most of these problems would be avoided if there were good formal definitions for the
languages. There would then be a single place for the precise details of each language, and no
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question would be left unanswered, and importantly, there would be a tendency to im-
prove the design of languages by bringing their complexities out into the open. It is easy to
say, ‘Language X is block structured and jumps out of blocks are permitted,” but without a
formal description of language X, the consequences are not obvious.

All methods of definition treat the following general problem. Given an alphabet of sym-
bols S, the set S* is the set of all possible symbol strings that can be constructed from S. A
definition both provides rules for selecting the set P C S* of legal programs of the language
being defined, and specifies the meaning of each legal program p € P.

There is considerable difference in the way the various definition methods select and
specify the set of legal programs and their meanings. These differences give rise to the fol-
lowing questions:

1) What precisely constitutes a valid program: one whose context-free syntax is correct,
one whose context-sensitive syntax is correct, or one that does not infringe any of the
semantic rules of the language during execution?

2) Should the definition model be based on the concept of an underlying machine?

3) How should a formal definition show errors: explicitly in the definition, or implicitly
by rules that only generate valid programs?

4) Should a definition attempt to indicate the places that an implementation may intro-
duce restrictions, and is it possible to foresee all such restrictions?

5) Should a definition also be suitable for automatic (machine) implementation?

Indeed we, the authors, have differing answers to these questions.

In this paper, we make the assumption that the raison d’étre of a language definition is to
provide information, and in particular, to answer questions about a language. The questions
may vary from the very general, “What data types are supported in the language?” to the
more detailed, “Are both parts of a disjunction always evaluated?” The usefulness of a
definition can, therefore, be judged by the quality of the answers it provides.

Among the characteristics that are important to the successful use of any method are:

e Completeness. There must be no gaps in the definition. In particular, there must be no
questions about the syntax or semantics of the language that cannot be answered by
means of the definition.

® Clarity. The user of the definition must be able to understand the definition and to
find answers to his questions easily. While it is obvious that some facility with the no-
tation of the language is essential before being able to understand the definition fully,
the amount of effort required should be small.

® Naturalness. The naturalness of a notation has a very large effect on the ability of a
user to understand a definition. The naturalness of a notation is more important than
its conciseness, although there is a relation between the two. We have, therefore, used
notational abbreviations only where there is a real gain in clarity, and we have chosen
mnemonic names wherever possible.

® Realism. Although the designer of a language may wish his universe of discourse to be
free from such mundane restrictions as finite numeric ranges and bounded storage,
these restrictions are the realities of the implementor’s world. The definition provided
by the designer, which is the implementor’s manufacturing specifications, must specify
exactly where restrictions or choices can be made, and where the designer’s unob-
structed landscape must be modeled exactly.

We present here a prose description and four very different formal definitions of the same
language. After giving these definitions, we pose several questions about the language being
defined and examine the ease with which one of them can be answered by means of the
definition. This leads to a critical review and evaluation of the techniques discussed. The
language used in the analysisis ASPLE, taken from Cleaveland and Uzgalis [C1] where it is
defined by a W-grammer, an extension of the method developed by van Wijngaarden [W2]
and used to define ArLgoL 68. Our first formal definition of ASPLE is derived from the
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definition presented in [C1]. During the development of the other formal definitions, this
W-grammar definition was taken as the final arbiter on the syntax and semantics of ASPLE.

A W-grammar consists of two sets of rules, the metaproductions and the hyperrules. These
combine to permit the formation of a potentially infinite set of productions, which are used
to define the syntax and the context-sensitive requirements. The semantics are specified by
using these productions to generate all possible execution sequences for a valid program.

The second formal definition is a development of the Production Systems approach pro-
posed by Ledgard [L2, L3]. Production Systems are used to construct a generative grammar
that directly specifies both the context-free and the context-sensitive requirements of the
language syntax. The semantics are specified by a second set of productions that map legal
programs into another target language. In this paper, the axiomatic approach of Hoare
[H1] is used as the basis for such a target language.

The next formal definition uses the Vienna Definition Language [L4, L6, L7, W1]. With
this method, a procedure is defined that transforms a program string into a tree representa-
tion according to the context-free syntax of the language. This tree is then converted into an
abstracted form that retains only those parts of the program that are required to express its
meaning. During this conversion, the context-sensitive requirements of the language are
checked. Finally, the meaning of the abstracted program is defined by its execution on an ab-
stract machine.

The final formal definition technique is that of Attribute Grammars [K1, L5, B1] which
augments a context-free grammar with “attributes’” attached to the syntactic categories.
These attributes are given values computed from the productions of the parent or descendant
nodes in the derivation tree for a program. This technique allows the designer to specify the
context-sensitive requirements of a language directly and to define the meaning of a program
by translating it into a separately defined sequence of actions.

One other major definition approach, developed by Scott and Strachey [S2], is not con-
sidered in this paper.i For a more detailed discussion and bibliography of this method,
see the recent works by Donahue {D1] and Tennent [T1).

We make no attempt to provide a formal proof of the equivalence of our four definitions of
ASPLE. Such a proof is beyond the scope of this paper. It is a reflection of the current state
of formal definitions that an attempt at such a proof, even for a toy language like ASPLE, is
excessively difficult. For a real programming language, the quantity of detail involved is be-
yond the control of unaided human effort. So far, little has been done to provide mechanical
aids for checking formal definitions.

There are three important applications of formal definitions that we do not consider in this
paper:

1) theoretical study of the foundations of programming languages;

2) automatic implementation of compilers; and

3) automatic validation of programs.

To assist the reader, we have included comments in the bodies of the actual definitions.
These are separated from the formal part by the use of square brackets.

1. INFORMAL DESCRIPTION OF ASPLE

ASPLE is a very small language derived from ALcoL 68. Its context-free syntax is defined
in Table 1.1 using BNF,

An ASPLE program consists of a sequence of declarations followed by a sequence of execut-
able statements. Each identifier used in an executable statement must appear once and only
once in the declarations. A declaration associates a “mode’” with one or more identifiers. The
mode of an identifier specifies: 1) the type of the value (integer or Boolean) to which it may
refer, and 2) whether the reference is made directly or through a declared number of pointers.
The executable statements of ASPLE are assignments, if-then-else conditionals, while-do
loops, input and output statements, all of which are of familiar syntax.

Computing Surveys, Vol, 8, No. 2, June 1976



[B0t1]

<program>

[Declarations]

[B02] <dcl train>

[B03] <stm train>

[B04]
[805]

<declaration>

<mode>

[B06] <idlist>

[Statements]

[B07] <statement>

[e08]
(8097

<asgt stmy

<cond stm>

[Bio]

<loop stm>

[B11]

<transput stm>

—_——

begin <dci train> ,
<stm train> end

<dectaration>
<declaration> ;

<statement>
<statement> ,

<mode> <idl1st>

bool

int

ref <mode>

<jd>

<id> , <idlist>
<asgt stms

<cond stms
<loop stm>
<transput stms

<1d = exp>

if <exp>
then <stm frain> fi
if <exp>
then <stm train>
else <stm train> fi

while <exp> do

<stm train> end
input <id>
output <exp>
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[Expressions]

[B12]
[813]

<dc! train>

[B14]
[B15]

<stm train>

<exp>
<factor>
<primary>

<compare>

|
|'
!
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<factor>
<exp> + <factor>
<primary>
<factor> x <primary>
<id>
<constant>

(<exp>)

{(<compare>)

<exp> = <exp>
<exp> # <exp>

[Constants and Identifiers]

{B16]
B17]

[Bi8]
{819]

[B20]
[B21]

[B22]

<constant>
<bool constant>

<int constant>
<number>

<digit>

<id>

<letters

TABLE 1.1. BNF DgscriprioN or ASPLE

An an example of an ASPLE program, consider the following:

begin
mt X,Y,Z;
nput X,
Y:=1;
Z:=1;
if (X # 0) then
while (Z # X) do
Z:=Z+41,;
Y:=Y+«2
end
output ¥
end

W~ =y

mn = 4

-

n

<bool constant>
<int constant>

true
false

<number>
<digit>
<pumber> <digtt>
01 11 ... 1 9

<letter>
<id> <fetters

Af By ... | Z

This program reads in a positive integer value, then computes and prints its factorial. The
program declares three integer variables X, Y, and Z. It starts by reading the value of X
from the input file and setting the values of both ¥ and Z equal to 1. If the value of X is not
zero, the factorial is computed by successively multiplying Y by inereasing values of Z until
X equals Z. The final value of Y, the factorial of X, is then printed on the output file.

This sample ASPLE program uses only identifiers that refer direetly to integral values.
These are similar, for example, to the variable A in the declaration:
it A
This variable, like all variables in ASPLE, must be given a value, either by assignment or
input, before it can be used in an expression. Since A refers to integral values, its mode is
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reference-to-integral. This declaration of A may be contrasted with a variable B declared as:
ref int B

Here B is a variable that refers to an integral value through a single level of indirection. Thus
the mode of B is a reference-to-reference-to-integral. In this case, we say that the “primitive
mode” of B is integral. Executing the assignment:

B:=A
sets the value of B to be a reference to A, which in turn refers directly to an integral value.
Executing the assignment:

A:=7

does not change the value of B, still a reference to A, but it does change the integral value to
which A refers, the same value that B refers to indirectly. To obtain the integral value to
which B refers, the value of B must be “dereferenced” twice. This is the “primitive value” of
B. This mechanism is extended for variables declared with multiple levels of indirection and
applies to Boolean values as well.

To evaluate an expression consisting of two identifiers separated by a + or *, the value of
each of the identifiers must be dereferenced as many times as needed to obtain a primitive
value of the same mode, integral or Boolean. The operators + and * placed between integral
values represent addition and multiplication, respectively. Between Boolean values, they
represent the logical “or’’ and “and” operations, respectively. The operators = and # apply
only to integral values and yield a Boolean value as a result. An expression in parentheses al-
ways yields a primitive value.

In an assignment statement, the mode of the identifiers on the left side must be compa-
tible with the mode of the value on the right side. To be compatible, two conditions must be
satisfied:

1) both sides must have the same primitive mode;

2) if the mode of the identifier on the left side contains n occurrences of “reference to”
and the mode of the value of the right side contains n, such occurrences, then the rela-
tion n, — 1 < n. must hold.

For example, given the declarations:

int A;
bool B;
ref int C;
ref ref int D;
both the assignments:
A n, = 1
C: n, = 2, nr
satisfy the two compatibility requlrements. On the other hand, the assignment
A:=8B
violates the first condition, and the assignments
C:=20 n,=2 n,
D:=A n; = 3, ng
both violate the second condition and are thus illegal.

The process of assighment takes place as follows:

1) The right side is evaluated to obtain a value ».

2) The value v is dereferenced sufficiently so that the mode of the value obtained con-
tains one fewer oceurrence of “reference to’’ than does the mode of the identifier on
the left side.

3) The value referred to by the identifier on the left side is replaced by the value ob-
tained in step 2).

0
3

H "
i II

([l
.
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To illustrate the mechanism of the assignment statment, consider the following program!

begin [01}
imtINTA, INTB; f02]
ref int REFINTA, REFINTB; [03]
ref ref int REFREFINTA, REFREFINTB; [04]

INTA := 100; 105}
INTB := 200; [06]
REFINTA := INTA; {071
REFINTB := INTB,; [08]
REFREFINTA := REFINTA; [09]
REFINTA := INTB; [10]
INTB := REFREFINTA; f11]
input REFREFINTA; [12]
outpul REFINTB {13]
end [14]

After line [09] has been executed, two chains of references will have been set up. The state is
shown schematically in Figure 1. Note that REFREFINTB has not been assigned a value.
The assignment of line {10} causes REFINTA to refer to INTB, no other value being
changed. The situation after executing this statement is as shown in Figure 2.

{ rEFREFINTA ) ( rerrma ) ( mm )
/

REFINTA —  INTA > 100
Figure 1.
GEFRE’FI NTB) CREFIIVTB ) ( e )
[ / |
INTB 200

‘ REFREFINTA , ‘ REFINTA ' ‘ INTA >

i

REFINTA » INTB 100
Figure 2.
( zerrEFTHTE ) (REFIIVTB ) ( mms )
y Y
INTB | 200

! In this program and throughout this paper, line numbers are included for reference purposes.
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(REFREFINTD ‘ REFINTA , ‘ INTA ,
Y

Y

REFINTA > INTB 100
{ rEFREFINTB } ( rerzurs ) (e )
J | )
INTB — 300
Figure 3.

The assignment of line [11] makes no change in the value of INT B because of the effect of
the statement of line [10]. The tnput statement of line [12] causes a value, say 300, to be read
from the input file and assigned to the variable found by following the chain starting at
REFREFINTA. The semantics of ASPLE require that this chain be set up by a sequence of
assignment statements before an input statement is executed. The result is depicted in Figure
3. The final statement thus prints the value 300. An attempt to execute

output REFREFINTB;

in place of line [13] is illegal, since the value of REFREFINTB is undefined and cannot be
dereferenced to produce a primitive value.

There are a number of details of ASPLE that are left for the implementor to define. For
example, the context-free syntax makes no limit on the number of variables that can be de-
clared or on the length of the program. Any actual implementation will be bounded by
machine constraints in these areas. Table 1.2 lists the features which the implementor must
supply to complete the definition of the language. These values have a bearing on both the
syntax and the semantics of ASPLE.

As a final note, this informal introduction makes no pretense of being a complete definition
of ASPLE. Indeed, it is our contention that a complete definition is almost impossible with-
out the use of a full formal definition method.

1) Maximum length of an ASPLE program, n, .

2) Maximum number of declared identificrs, n .

3) Maximum number of digits in an integer constant, n; .

4) Maximum number of letters in an identier, n. .

5) Maximum value that can be taken by an integer vanable, n; , and the action performed
when the addition and multiplication operations of the actual result exceeds ns .

6) Maximum size of the output file, ng .

TABLE 1.2. IMPLEMENTATION-DEFINED FEATURES oF ASPLE
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2, W-GRAMMARS

The use of two-level grammars known as W-grammars was developed as a definition tech-
nique by van Wijngaarden and used for the description of ALgoL 68 [W2]. Cleaveland and
Uzgalis, who have given an easy to read exposition [C1] of W-grammars, are the source of the
definition of ASPLE from which we have derived the W-grammar presented in this section.
To maintain a consistent notation throughout this paper, we have departed slightly from the
usage of [C1,W2].

A finite set of BNF productions is often used to define the context-free parts of a program-
ming language. A W-grammar consists of two finite sets of rules, the metaproductions and the
hyperrules. The hyperrules are prototypes for context-free productions and, together with
the metaproductions, describe how the user can derive a conceptually infinite set of produc-
tions. This infinite set of context-free productions is able to specify the context-sensitive re-
strictions and semantics of a language.

Metaproductions

Metaproductions are context-free productions. The nonterminals of metaproductions, called
metanotions, are written in upper case letters, for example, INTBOOL.? Their terminal
strings consist of lower case characters with blanks added to improve readability, for ex-
ample, letter and ref ref, the so-called protonotions, to be explained in the following para-
graph. In conventional BNF, the nonterminals are distinguished by being enclosed in some
form of brackets. In Table 1.1, angle brackets “< and >’ are used for this purpose. In W-
grammars, no such convention is used. The nonterminals of the productions derived from the hy-
perrules are words and phrases chosen to give an almost prose-like quality to the grammar.

Consider the following metaproductions taken from the W-grammar definition of ASPLE
given in Table 2.1 (p. 200).

imp01) ALPHA :: a;b; ... ;2.
[MPO3] NOTION :: ALPHA;
NOTION ALPHA.
[MPOS) INTBOOL :: int;
bool.
[MPO7) MODE :: INTBOOL;
ref MODE.

Each metaproduction specifies all production alternatives for a given metanotion. For ex-
ample, the first metaproduction specifies that the metanotion ALPHA generates the proto-
notions a, b, . . ., or z. The symbol “::” is used to separate the left side and the right side of
the metaproductions, the symbol “;" is used to separate the alternatives of the right side,
and the symbol “.” is used to terminate a metaproduction. The metaproduction [MPO3]
specifies that the metanotion NOTION generates either the metanotion ALPHA, which in
turn generates any lower case character, or the metanotion NOTION followed by ALPHA.
Recursive application of this second alternative allows the generation of any string of lower
case characters from the metanotion NOTION. Similarly, the metanotion INTBOOL gene-
rates the protonotions int and bool, and the metanotion MODE generates infinitely many
protonotions consisting of a (possibly empty) sequence of ref’s followed by int or bool.

* Throughout this paﬁer boldface characters used in the text correspond to the sans serif characters
found in the tables. [Editorial note]
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[mPo1]
[mMP02]
[MPO3]

[MPO4]
[MPO5]
[MPO6]
[MPO73]
CMPog]
[MPO9]
fMPi0]
[MPI1]
{mP12]

[MP13]

[MPi14]
[MPI5]
[MPi16]

fmPi7]
[mMPI8]

[MPi19]
[MP20]
[MP21]

[MP22]

. M. Marcotty, H. F. Ledgard, and G. V. Bochmann

ALPHA
EMPTY

NOTION

NOTETY

TAG

INTBOOL

MODE

ONES

NUMBER

RADIX

BOOL

VALUE

BOX

LocC

LOCS

LOCSETY

TABLE

UNIT

SNAP

SNAPS

SNAPSETY

DATA

, by , 2
ALPHA,,

NOTION ALPHA
NOTION ,
EMPTY .

letter ALPHA,
TAG letter ALPHA.

int,
bool.

INTBOOL ,
ref MODE -

one ,
ONES one -

ONES ,
EMPTY .

one one onhe one one

one one one one ONE -

true,
false.

NUMBER,
BOOL .

VALUE,
undefined,
TAG

loc TAG has MODE refers
BOX end.

Loc,
L0CS LOC

Locs ,
EMPTY .

LOCS.

foop ,

assignment ,
conditional ,
transput .

memory LOCS FILE FILE
SNAP ,

SNAPS SNAP .

SNAPS
EMPTY

EMPTY
space VALUE DATA -

[mMp233
[Mp24]

[mP25]

[MP26]

MP273]

[mMp28]

MP297]

[MP30]

mp31]

[MP32]
[mP33]

[MP34]

[MP353

[MP36]

[MP37]

[Mp38]

FILE DATA end of file -
RELATE equals ,
not equals .
OPER plus ,
times ,
RELATE .
EXP left EXP OPER EXP right;
VALUE,
DEREFSETY TAG.
DEREFSETY EMPTY,
deref DEREFSETY
REFS ref
' REFS ref.
STMT EMPTY ;
1 f EXP then STMTS else
STMTS f1
white EXP do STMTS end,
TAG becomes EXP val,
DEREFSETY TAG input,
EXP output.
STMTS STMT ,
STMTS STMT .
STMTSETY STMTS ,
EMPTY |
ALPHABET abcdefghijkimnopgrstuvwxyz .
MAXLEN

[ implementation defined measure
of mazimum program length nl]

MAXTABLE LOC LOC LOC .
[ the number of occurrences of "LOC" 8
the implementation defined quantity
n ]
2

MAXD1G ONES token ONES token
ONES token

[the maximum number of digite is the
implementation defined quantity naj

MAXLENGID letter ALPHA

ALPHA

[the number of occurrences of "letter
ALPHA" 18 the wimplementation defined
quantity n“]

letter

MAXINT one one .., one
[the number of occurrences of "one”
18 the implementation defined
quantity nsj
MAXFILELEN space VALUE
VALUE.
(empilementation defined measure of
maximum size of an output file n6]

space

TABLE 2.1. METAPRODUCTIONS FOR THE W-GRAMMAR DEFINITION OF ASPLE
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Hyperrules

A hyperrule is a blueprint from which context-free productions can be obtained. For ex-
ample, the hyperrule

[HR94] NOTION sequence:
NOTION;
NOTION sequence,
NOTION.

is a prototype for the construction of productions for sequences. It contains both metano-
tions, in uppercase characters, and protonotions, in lower case characters. The notation is
the same as that used for metaproductions, except that the symbol “:” is used instead of
.7 to separate the left side from the right side of the rule, and the symbol “,” is used to
separate different protonotions within the same alternative. A context-free production is
obtained from a hyperrule by replacing each metanotion by a protonotion derived from the
metaproductions. In this example, the metanotion NOTION is to be replaced by a proto-
notion.

The metaproductions [MPO1} and [MPO3] allow us to generate an infinite set of protonotions
from the metanotion NOTION, for example, value and identifier. Replacing NOTION by
these protonotions in the preceding hyperrule, we can obtain in turn the productions:

value sequence: value;
value sequence,
value.

identifier sequence: identifier;
identifier sequence,
identifier.

The nonterminals of these context-free productions are value sequence, value, identifier
sequence, and identifier. This simple substitution technique is used in W-grammars to
generate the infinjte set of context-free productions required for the specification of the syn-
tax and the semantics of a language.

In making the substitution of protonotions for metanotions, all occurrences of the same
metanotion in the hyperrule must be replaced by the same protonotion. This is the uniform
replacement rule. For example, the production:

value sequence: identifier;
value sequence,
identifier.

cannot be obtained [HR 94] since the uniform replacement rule would be violated; the meta-
notion NOTION has not been replaced by the same protonotion throughout the hyperrule.

The context-free productions obtained correspond closely to BNF productions. As we
have already seen, the nonterminals in the generated productions are separated by commas
and may consist of sequences that resemble English phrases when the names of metanotions
and protonotions are chosen appropriately. Terminal notions, from which ASPLE programs
are constructed, can appear on the right side of hyperrules and thus in the generated pro-
ductions.

It is customary in W-grammars to write terminal notions as symbols, for example, ‘“‘comma
symbol”’ for the terminal notion that represents a comma in an ASPLE program. The ques-
tion of how the symbols are actually represented in terms of character strings is left to the
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[starting hyper-rulel

CHROI] program.

begin,
dcl train of TABLEl,
TABLE, restrictions,

TABLEI STMTS stm train,

end,
where MAXLEN contains begin TABLEI STMTS end,
FILF_l
FILE2

execute STMTS with
memory TABLE| FILE| end of file
SNAPSETY
memory TABLE2 FILE3 FILEZ.

stream,
stream,

[hyper-rules for generating the declaration train of a programl

fHRrRO2] det train of LOCS LOCSETY
MODE declarer,
ref MODE definitions of LOCS,

det train of LOCSETY,
where LOCSETY is EMPTY,
MODE declarer,
ref MODE definttions of LOCS,

z

[HRO3] ref MODE declarer

ref,
MODE declarer.

[HRO04] int deciarer int.
[HROS5] bool declarer bool.
(HRO6] MODE definitions of loc TAG has MODE refers undefined end LOCSETY

TAG i1dentifier,

MODE definttions of LOCSETY,

where LOCSETY 1s EMPTY,
TAG 1dentifier.

Chyper-rulee for checking context~sensitive requirements on the symbol table]

[HRO7] LOCSETY loc TAG has MODE refers undefined end restrictions
where TAG is not 1n LOCSETY,
where MAXTABLE contains LOC LOCSETY,
LOCSETY restrictions,

where LOCSETY s EMPTY.

[HRO8] where TAGI is not I1n loc TAG2 has MODE refers undefined end LOCSETY
where TAGl differs from TAGZ,
where TAG| s not In LOCSETY,
where LOCSETY 1s EMPTY,

where TAGl differs from TAGZ.

TABLE 2.2. HYyPERRULES FOR THE W-GRAMMAR DEFINITION oF ASPLE
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[hyper-rules for generating the statement train of a program]

[HRO9] TABLE STMT STMTSETY stm trarn:
TABLE STMT UNIT,

%ABLE STMTSETY stm train,

where STMTSETY is EMPTY,
TABLE STMT UNIT

[HR10] TABLE TAG becomes EXP val assignment
TABLE ref MODE TAG i1dentifrer,

TRABLE EXP MODE value.

CHRIT] TABLE 1f EXP then STMTSl else STMTS, f1 conditional-
if,
TABLE EXP bool value,
then,
TABLE STMTS|

TABLE STMTS2 elsend.

stm train,

[HR12] TABLE STMTS elsend

fi,
where STMTS 1s EMPTY,
else,
TABLE STMTS stm frain,
fe.
CHRI13] TABLE while EXP do STMTS end loop
while,
TABLE EXP bool value,
do,
TABLE STMTS stm train,
end.

[HR14] TABLE EXP input transput.
wnput,
strong TABLE EXP ref INTBOOL rdentifier.

[HR15] TABLE EXP output transput
output,
TABRLE EXP INTBOOL value.

[hyper-rules for generating an expression]

[HR16] TABLE left EXP, plus EXP, rignf INTBOOL value
TABLE EXP| INTBOOL value,
+,
TABLE EXP, INTBOOL factor.

[HR17] TABLE EXP MODE value
TABLE EXP MODE factor

[HR18] TABLE left EXP' times E)(P2 right INTBOOL factor:

TABLE EXPI INTBOOL factor,

*
»

TABLE EXP2 INTBOOL primary.

[HRI9] TABLE EXP MODE factor:
TABLE EXP MODE primary.

TABLE 2.2. —Continued

203
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[HrR20] TABLE EXP MODE primary
strong TABLE EXP MODE i1dentifier;
TABLE EXP MODE value pack,
MODE EXP denotation,
where MODE (s INTBOOL,
TABLE EXP compare pack,
where MODE ts bool.
[HRZ1] TABLE left EXP, RELATE EXP, right compare
TABLE EXP' Int value,
relate symbol,
TABLE EXP2 1nt value.
CHR223] equals symbol =.
[HR23] not equals symbol £
[HR24] strong TABLE deref EXP MODE identifier
strong TABLE EXP ref MODE identifier.
[HR25] strong TABLE TAG MODE identsfier
TABLE MODE TAG identifier.
[HR26] TABLE MODE TAG 1dentifier
TAG 1dentifier,
where TABLE contains loc TAG has MODE,
where MAXLENG!ID contains TAG.
[HR27] letter ALPHA 1dentifier:
fetter ALPHA symbol, :
TAG 1dentifier
[HR28] letter ALPHA i1dentifier,
fetter ALPHA symbot.
[HR29] letter a symbol A.
fHR39] letter b symbol B.
etc.
[HR54] letter z symbol Z.
[HR55] bool true denotation true.
[HR56] bool false denotation false.
[HR573] int NUMBER‘ denotation
NUMBERI token,
nt
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NUMBER2 denotation,
NUMBER3 token,

where NUMBER4 equals NUMBER2 times RADIX,

where NUMBERl
where MAXD!G contains NUMBER

TABLE 2.2, —Continued
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[HR58] token 0

[HR59] one token 1.

fHR60] one one token 2.

CHR61] one one one token 3.

[HR621 one one one one token 4.

[HR63] one one one one one token 5.

[HR64] one one one one one one token 6.

[HR65] one one one one one one one token 7. N
[HRE6] one one one one one one one one token 8,

[HR67] one one one one one one one one one token 9.

Chryper-rules for generating the representation of a filel

(HR68] space VALUE FILE stream
VALUE denotation,

s
FILE stream.
[HRE9] end of file stream eof.

Chyper-rules for checking the execution semantics of statements]

[HR70] execute STMT STMTS with SNAPS, SNAP SNAPS2

|
execute STMT with SNAPS' SNAP,

execute STMTS with SNAP SNAPSZ.

[HR71] execute 1f EXP then STMTSI else STMT52 f1 with SNAP SNAPS

evaluate EXP from SNAP giving true,
execute STMTS] with SNAP SNAPS,

evaluate EXP from SNAP giving false,

execute STMTS2 with SNAP SNAPS.

[HR72] execute whiie EXP do STMTS end with SNAP
evaluate EXP from SNAPI
where SNAPI Is SNAPZ,
where SNAPSETYI SNAPSETYZ s EMPTY,
evaluate EXP from SNAP|
execute STMTS with SNAPI SNAPSETYI SNAPZ,
execute while EXP do STMTS end with SNAP2 SNAPSETY2

SNAPSETY' SNAP, SNAPSETY

! 2 2

giving false,

giving true,

[HR73] execute TAG becomes EXP val with SNAP' SNAP
evaluate EXP from SNAP giving BOX,,
where SNAP‘ s
memory LOCSETYI
loc TAG has MODE refers BOX! end
LOCSETY2 FILEl FILEZ,
where SNAP_ s
memory LaCSETY|

loc TAG has MODE refers BOX
LOCSETY2 FILE[ FILE2

2

2 end

TABLE 2.2. —Continued
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LHR/4] execute DEREFSETY TAG‘ input with SNAPl SNAP2.
evaluate DEREFSETY TAGl from SNAP giving TAG
where SNAPI 15
memory LOCSETY

| 2’

loc TA62 has ref INTBOOL refers BOX| end
LOCSETY2 space VALUE FILEl FILEZ,
where SNAP2 s

memory LOCSETYl
foc TAG2 has ref INTBOOL refers VALUE end

LOCSETY2 FILEl FILEZ,

where VALUE matches INTBOOL,
where SNAPI 1s memory LOCS end of file FILE.

Lend of file error] abnormal termination.

[HR75] where NUMBER matches INTBOOL
where INTBOOL 15 int,
where INTBOOL s bool,
Cinput error] abnormal termination

[HR76] where BOOL matches INTBOOL
where INTBOOL is bool,
where INTBOOL 1s 1nt,
[input error] abnormal termination.

EHR77] execute EXP output with SNAP! SNAP2
evaluate EXP from SNAP' gtving VALUE,
where SNAPI ts memory LOCS FILE| DATA end of file,
where SNAP2 s memory LOCS FILE‘ DATA space VALUE end of file,
where MAXFILELEN confalns DATA space VALUE,
evaluate EXP from SNAF’l giving VALUE,
where SNAP1 1s memory LOCS FILEI DATA end of file,
where SNAP2 I's memory LOCS FILE‘ DATA space VALUE end of file,

where DATA space VALUE contains MAXFILELEN,
{output file overflow] abnormat termination.

(HR78] execute EMPTY with SNAP SNAP. +true

[hyper-rules for evaluating expressions]

[HR793 evaluate left EXP  OPER EXP, right from SNAP giving VALUE
) from SNAP giving VALUEZ,

evaluate EXP2 from SNAP giving VALUES,

where VALUE' equals VALUE2 OPER VALUE3

evaluate EXP

[HR80] evaluate deref DEREFSETY TAG from SNAP giving BOXI
evaluate DEREFSETY BOX2 from SNAP giving BOX|,
where SNAP contains loc TAG has MODE refers BOX2 end.

[HR81] evaluate BOX from SNAP giving BOX
where BOX differs from undefined,
where BOX 1s undefined,
Cuninitialized variable reference error] abnormal terminetion

TABLE 2.2. —Continued
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CHR82] where NUMBERI equals NUMBER2 plus NUMBER3
where MAXINT contains NUMBER2 NUMBERS,
where NUMBERI is NUMBER2 NUMBERB,

where NUMBER2 NUMBER3 one contains MAXINT,

[arithmetie overflow] abnormal termination.

[HRB}] where NUMBERI equals NUMBER2 times NUMBER3 one,
where MAXINT contains NUMBER[,

where NUMBERI s NUMBER4 NUMBERZ,

where NUMBER4 equals NUMBER2 times NUMBERB,
where NUMBER4 NUMBER2 one contains MAXINT,

where NUMBER4 equals NUMBER2 times NUMBERB,

Carithmetie overflow] abnormal termination.

[HRB4] where NUMBER equals NUMBER times one true.
[HR85] where EMPTY equals NUMBER times EMPTY true

[HR86] where true equals BOOL] plus BOOL2 where BOOLI 1s true,
where BOOL, 1s True.

2

fHR87] where false equals false plus false true
[HR88] where false equals BOOL‘ times BOOL2 where BOOLI 1s false,

where BOOL2 1s false.
[HR89] where true equals true times true true.
[HR90] where true euqals NUMBER equals NUMBER true.

.

[HR91] where false equals NUMBER, equals NUMBER2 where NUMBERl differs from NUMBERZ.
[HR92] where false equals NUMBER not equals NUMBER true.
CHR93] where true equals NUMBER' not equals NUMBERZ' where NUMBERI differs from NUMBERZ.

Chyper-rules for defining sequences and packs, and for checking various conditions)

{BR94] NOTION sequence
NOTION,
NOTION sequence,
NOTION.

[HR95] NOTION pack

NOTION,
).

CHR96] true EMPTY.

[HR97] where NOTETY 1s NOTETY true. -
[HR98] where NOTETY, NOTION NOTETY, contains NOTION  true
CHR99] where NOTETY, ALPHA, differs from NOTETY, ALPHA

1 1 2

where NOTETYI differs from NOTETYZ,
where ALPHA‘ precedes ALPHA2 tn ALPHABET,

where ALPHA2 precedes ALPHAI tn ALPHABET

2

[HR100] where ALPHA, precedes ALPHA

| ALPHA, NOTETY

2 2 true.

'n NOTETYI ALPHA[ NOTETY

2 3

TABLE 2.2. —Continued
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implementation. For example, in [C1} hyperrule [HRO3] is given as

ref MODE declarer:
ref symbol,
MODE declarer.

The string ref symbeol is a terminal notion, which in an ASPLE program would have the
character string representation ref.

For continuity between the four definition techniques, we use a different notation for
terminal notions in this paper. These are written in italic or underlined characters, thus sug-
gesting directly their character string representation. For example, the preceding hyperrule
is written as

[{HRO3] ref MODE declarer:

ref,
MODE declarer.

and the not equals symbol is defined by the hyperrule:
[HR23] not equals symbol: .

There is a close interplay between the metaproductions and the hyperrules. The hyper-
rules are essentially parameterized macrostatements for context-free productions with the
metanotions used as formal parameters. These metanotions are abstractions for constructs
that are very much program dependent, for example, the symbol table and the abstracted
statement train.

Overview of the W-grammar Definition of ASPLE

The metaproductions given in Table 2.1 and the hyperrules given in Table 2.2 form a W-
grammar that defines all aspects of the context-free and context-sensitive syntax and se-
mantics of ASPLE. The starting hyperrule [HRO1] affords an overview of these three seg-
ments;

[HRO1] program:

begin, fo1]
del train of TABLE, , [02]
TABLE, restrictions, [03]
TABLE, STMTS stm train, [04]
end, [05]
where MAXLEN contains begin TABLE, STMTS end, [06]
FILE, stream, [07]
FILE; stream, [08]
execute STMTS with [09]
memory TABLE; FILE, end of file {10]
SNAPSETY [11]
memory TABLE; FILE; FHLE, . [12]

Lines [01] and [05] give the terminals that mark the start and finish of an ASPLE program.
Lines [02] through [04] are the prototypes for the nonterminals from which the declare train
and the statement train of an ASPLE program can be derived. Lines [06] through {12] define
the semantics of this program. An input file can be derived from line {07], and an output file
can be derived from line [08]. Lines [09] through [12] ensure that the output file derived from
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line [08] is the one that would be obtained by executing the program with the input file de-
rived from line [07].

Line [02] gives the prototype for the nonterminal from which the declare train of the pro-
gram can be derived. This line contains the metanotion TABLE; , which is an abstraction of
the “symbol table” of the program being defined. The actual symbol table is a protonotion
that can be derived from TABLE using the metaproductions. The next section describes the
derivation of a symbol table from the declare train of a program. The subseript in TABLE,
serves to distinguish this metanotion from the metanotion TABLE; in line [12], since, by
convention, the uniform replacement rule applies only to nonterminals with identical sub-
scripts. In addition to serving as a symbol table, TABLE, also serves as the initial memory
state for the execution of the program, with all variables having the initial value undefined.

Line [03] applies the context-sensitive restrictions to the symbol table TABLE, , which
matches the declare train. By applying metaproductions [MP17], [MP15], and [MP14], TABLE,
in line [03] can be replaced by a protonotion that matches the left side of hyperrule [HRO7]:

[HRO7] LOCSETY loc TAG has MODE refers undefined end restrictions:
where TAG is not in LOCSETY,
where MAXTABLE contains LOC LOCSETY,
LOCSETY restrictions;
where LOCSETY is EMPTY.

This hyperrule is the only one whose left side contains restrictions. Since restrictions is a
protonotion, it cannot be replaced and will appear on the left side of all productions derived
from hyperrule [HROZ]. This hyperrule must therefore be used next in the derivation from
line [03]. It is used to generate productions that will check that no identifier is declared more
than once and that the number of declared identifiers does not exceed the implementation-
defined maximum. As we shall see, W-grammars make checks of this kind by using the con-
vention that certain parts of the derivation tree must terminate in an “empty sequence.” The
restrictions are enforced by ensuring that only for legal programs can every protonotion in
the derivation tree be reduced to either an empty sequence or to a sequence of terminals
forming the program.

Line [04] specifies a statement train and uses the symbol table TABLE; to check the con-
text-sensitive requirements on statements. Line [04] also contains a metanotion STMTS
which is replaced by protonotions derived from the metaproductions. These protonotions
form an abstraction of the statement train described in the Subsection, Internal Representa-
tion of the Statement Train [see page 213]. It is this abstracted form of the program that is
used to specify the semantics of the program, as is described in the Subsection, Semantic
Definition [see page 215). Line [06] is used to check that the program is not too long, as
specified by the implementation-defined metanotion MAXLEN.

Lines [07] and [08] generate the input and output files. FILE,; denotes the input file, and
FILE: denotes the output file obtained after execution of the program. The terminal string
generated by the W-grammar consists of a program text followed by a representation of the
initial input file and the final output file.

Lines [09] through [12] specify the semantics of executing STMTS, starting with the initial
memory state in TABLE, and the input file FILE, . Initially the output file is empty and
this is represented by end of file. The metanotion SNAPSETY is used to derive a
series of “snapshots” that record the sequence of memory states caused by the execution of
STMTS. Each snapshot contains the current memory state and the state of the input and
output files. The final snapshot is line [12]. By the uniform replacement rule, the protonotion
replacing FILE; must be the same as the one in line [08] which generates the final output file.
The metanotion FILE; denotes the input file at the end of execution and contains the values
of the input file that were not used as input to the program.
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As already mentioned, there are checks that certain protonotions correspond according
to the rules of ASPLE. For example, in line [02], TABLE, must be consistent with the declare
train of the program; and in line [09)], the sequence of memory snapshots must follow from
the abstracted program STMTS. These checks are accomplished by rules in the grammar
that reduce to EMPTY, that is, empty sequence, if and only if certain conditions are satis-
fied. For example, suppose we had a derivation that terminates in the nonterminal proto-
notion

where one token equals one token times one
From the hyperrule [HR84]

[HR84] where NUMBER equals NUMBER times one: true.

we can derive the production
where one token equals one token times one: true.
The hyperrule [HR94]

[HR96} true: EMPTY.
and the metaproduction [MP0O2]
[MPO2] EMPTY

show that we can derive the empty sequence from true. Thus the empty sequence can be de-
rived from the protonotion

where one token equals one token times one
However, had the nonterminal in the derivation tree of a program been
where one token equals token times one

we would not have been able to generate a production that would lead to an empty sequence.
It is in this way that the W-grammar shows that a program is illegal.

Similarly, line [03] generates the empty (terminal) string if and only if the context-sensi-
tive restrictions of the symbol table are satisfied. Lines [09] through [12] will generate an
empty sequence only if the input and output files correspond to the semantics of the pro-
gram. If the conditions are not satisfied, there are no production rules that can be generated
that will allow an empty terminal string to be derived from these lines. One of the difficulties
with this technique is that, in general, there is no method of proving that the required pro-
duction rules cannot be generated. The user must be convinced of this fact informally.

Thus a legal program and its meaning are defined by a W-grammar as a program for which
there exists a derivation tree whose terminals, taken in left-to-right order, form:

1) the program;

2) the values of the input file before execution of the program;

3) the values of the output file after execution of the program;
and nothing else.

Symbol Table

The symbol table of the W-grammar is the major vehicle for the specification of the con-
text-sensitive requirements and semantics of ASPLE. A symbol table is a protonotion de-
rived from the metanotion TABLE. In this subsection, we will follow in detail the derivation
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of a valid declare train of a program from line [02] of the hyperrule [HRO1]. This derivation is
typical of the rest of the W-grammar.
The metaproductions:

[MP17] TABLE :: LOCS.
{mP15]) LOCS :: LOC;
LOCS LOC.

define a, TABLE as a nonempty sequence of protonotions derived from LOC according to:

[MP14] LOC :: loe TAG has MODE refers
BOX end.

Here, the strings loc, has, refers, and end are included in the protonotion to be derived
from LOC to help the user with the pattern matching required when searching the table for
an applicable hyperrule to use, and to make these protonotions unambiguous. The metano-
tion TAG is defined by:

[mpPoO5] TAG :: letter ALPHA;
TAG letter ALPHA.

Thus TAG produces a protonotion that represents an identifier. For example, the ASPLE
identifier ABC is represented by the protonotion letter a letter b letter ¢. As shown earlier,
the metanotion MODE generates protonotions for the mode of an identifier. The metanotion
BOX, which holds the value of an identifier, is defined as

mP13] BOX :: VALUE;
undefined;
TAG.

showing that the value of an identifier is either an integral or a Boolean value, an identifier,
or undefined. The fact that the replacement of TABLE, in line [03] of hyperrule [HRO1]

TABLE, restrictions,

must form a protonotion that matches a left side of hyperrule [HRO7] requires that BOX be
replaced in TABLE, by undefined. This shows that the initial value of an identifier is un-
defined in ASPLE.

As an example we consider a program with the declare train:
nt A;
bool AB;
ref int C
The protonotion derived from TABLE corresponding to this declare train is

loc letter a has ref int refers undefined end
loc letter a letter b has ref bool refers undefined end
loc letter ¢ has ref ref int refers undefined end

Substituting this protonotion in line {02] of hyperrule (HRO11,

dcl train of TABLE, ,
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we obtain the protonotion

del train of loc letter a has ref int refers undefined end
loc letter a letter b has ref bool refers undefined end
loc letter ¢ has ref ref int refers undefined end

We next show how the hyperrules of the W-grammar can be used to derive the given de-
clare train from this protonotion. The only hyperrule whose left side starts with del train
is [HRO2]:

[HRO2] del train of LOCS LOCSETY:
MODE declarer,
ref MODE definitions of LOCS,

3
del train of LOCSETY;
where LOCSETY is EMPTY,
MODE deeclarer,
ref MODE definitions of LOCS,

If we make the following replacements:

® loc letter a has ref int refers undefined end

for LOCS

® loc letter a letter b has ref bool refers undefined end
loc letter ¢ has ref ref int refers undefined end
for LOCSETY

® int
for MODE

and, since LOCSETY is not EMPTY, if we choose the first alternative, we will obtain the
following context-free production rule, which we refer to as production [{X}:

dcl train of loc letter a has ref int refers undefined end
loc letter a letter b has ref bool refers undefined end
loc letter ¢ has ref ref int refers undefined end:

int declarer,
ref int definitions of loc letter a has ref int refers undefined end,

E’l::l train of loc letter a letter b has ref bool refers undefined end
loc letter ¢ has ref ref int refers undefined end.

The right side of production [X] has three nonterminal protonotions and a terminal notion
;- The hyperrule [HR04]

[HRO4] int declarer: inl.

allows us to derive the terminal ¢nt from the first of the three protonotions. The second proto-
notion contains definitions of loe which forces us to choose hyperrule [HR06):

[HRO4] MODE definitions of loc TAG has MODE refers undefined end LOCSETY :
TAG identifier,

2
MODKE definitions of LOCSETY;

where LOCSETY is EMPTY,
TAG identifier,

Computing Surveys, Vol. 8, No. 2, June 1976



A Sampler of Formal Definstions . 213

since this is the only hyperrule whose left side contains this sequence. By making the substi-
tutions:

® the empty string

for LOCSETY
® refint

for MODE
e letter a

for TAG

we are able to form a production whose left side matches the second protonotion of produc-

tion [X]. Since LOCSETY is EMPTY, we choose the second alternative, and have the pro-
duction

X} ref int definitions of loc letter a has ref int refers undefined end:
where is,

letter a identifier.

The protonotion where is generates the empty string. This can be seen by applying the
hyperrules

[HR96] true: EMPTY.

[HR97] where NOTETY is NOTETY: true.

with the substitution of the empty string for NOTETY, to obtain the production:
where is: true.

As we have already seen, hyperrule [HR96] allows us to derive the empty string from true.

The protonotion letter a identifier generates the terminal symbol A by using the hyper-
rule

[HR28] letter ALPHA identifier:
letter ALPHA symbeol.

with ALPHA replaced by a, and

[HR29]} letter a symbol: A,

Applying these production rules to the protonotions we have derived from the production
[X]:

nt A;
del train of loc letter a letter b has ref bool refers undefined end
loc letter ¢ has ref ref int refers undefined end

This is the first part of the declare train of the program followed by a protonotion to which
the same technique can be applied to derive the remaining part of the declare train.

Internal Representation of the Statement Train
The symbol table derived from the metanotion TABLE serves as an internal representation

of the program’s declare train. The W-grammar uses the symbol table, together with an in-
ternal representation of the program’s statement train, to specify the semantics. The in-
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ternal form of the statement train is a protonotion that can be derived from the metanotion
STMTS using the metaproductions [MP30] and [MP29]:

[mP30] STMTS :: STMT;
STMTS STMT.

mpP29] STMT :: EMPTY;
if EXP then STMTS else
STMTS fi;
while EXP do STMTS end;
TAG becomes EXP val;
DEREFSETY TAG input;
EXP output.

For example, the protonotion that corresponds to the statement train of the program

begin
bool A;
ref bool C;
C:=4;
input A;
output C
end

is as follows:

letter ¢ becomes letter a val
letter a input
deref deref letter ¢ output

The correspondence between this protonotion and the written form of the statements is
established in the same way as the correspondence between TABLE and the written form
of the declare train, described in the Subsection, Symbol Table.

The rules that establish this correspondence also specify the context-sensitive require-
ments of ASPLE. For example, for the assignment statement, the hyperrule:

[HR10) TABLE TAG becomes EXP val assignment:
TABLE ref MODE TAG identifier,

TABLE EXP MODE value.

contains in the left-side part the string TAG becomes EXP val which is the internal repre-
sentation of the statement. The right side of the hyperrule reflects the written form:

identifier ;= value

of the assignment statement. The protonotion derived from TAG is the representation of
the left-side identifier of the assignment statement, and EXP is a representation of the
right-side expression. The mode of the identifier and the mode of the expression value must
be compatible, that is, their primitive modes must be the same. This is ensured by the uni-
form replacement rule which causes both occurrences of MODE in hyperrule [HR10] to be
replaced by the same protonotion. In addition, the mode of the value must contain one less
ref than the declared mode of the identifier in the TABLE. This is indicated by the addi-
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tional ref for the mode of the identifier. The fact that ref MODE is the declared mode
of the identifier in the TABLE is enforced by the production rules generated from:

[HR26) TABLE MODE TAG identifier:
TAG identifier,
where TABLE contains loc TAG has MODE,
where MAXLENGID contains TAG.

The protonotion substituted for MODE in this hyperrule contains the additional ref so that
the left side of the resulting production matches the protonotion on the right of the pro-
duction derived from hyperrule [HR10). The protonotion obtained by substitution in

where TABLE contains loc TAG has MODE

can only be reduced to the empty string if the symbol table contains TAG declared with
MODE.

Semantic Definition

The execution of a program is defined by the sequence of states through which the memory
and the input and output files pass. The transition from one state to the next corresponds
to the execution of a statement of the program. The sequence of states is represented by
the protonotion derived from SNAPSETY. This is a sequence of protonotions derived from
SNAP (meaning snapshot) which is of the form memeory LOCS FILE FILE (see meta-
productions [MP15] and [MP23]). As we have already seen, LOCS generates a protonotion
that records the values of the variables and was initially set up as part of TABLE,;. The
two protonotions derived from FILE represent the input and output files. Lines [09] through
{12] of hyperrule [HRO1] provide the root of the derivation tree for the execution

execute STMTS with
memory TABLE, FILE, end of file
SNAPSETY
memory TABLE; FILE; FILE, .

The initial snapshot is memory TABLE,; FILE, end of file, where TABLE, is the symbol
table, in which all the variables have the value undefined, FILE, is the input file, and the
output file is empty since it consists only of end of file. The final snapshot contains the
output file FILE, which, by the uniform replacement rule, will be the same as the proto-
notion substituted into line [08] of hyperrule [HRO1]). Lines [09] through [12] of hyperrule
[HRO1] will reduce to EMPTY only if this sequence of snapshots corresponds exactly to the
execution of the protonotion derived from STMTS. For each executed statement of the
program, a production must be generated that will check that the differences in the states
of the memory and files before and after execution of the statement correspond exactly
to the semantics of the statement.
The starting and final snapshots corresponding to the execution of the ASPLE program:
begin
bool A4;
ref bool C;
input A;
C:= A;
output C
end

with an initial input file containing the sequence of three values true, are:
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memory loc letter a has ref bool refers undefined end
loc letter ¢ has ref ref bool refers undefined end
space true space true space true end of file

end of file
and
memory loc letter a has ref bool refers true end
loc letter ¢ has ref ref bool refers letter a end
space true space true end of file
space true end of file
respectively.

The execution semantics of the assignment is described by the hyperrule:

HR73] execute TAG becomes EXP val with SNAP, SNAP, :
evaluate EXP from SNAP giving BOX;,

where SNAP, is
memory LOCSETY,
loc TAG has MODE refers BOX, end
LOCSETY,; FILE, FILE,,

where SNAP, is
memory LOCSETY,
loc TAG has MODE refers BOX; end
LOCSETY, FILE, FILE, .

This hyperrule specifies that the snapshot before execution, SNAP;, is identical to the snap-
shot after execution, SNAP,, except that the BOX, to which TAG refers in SNAP; has
been replaced by BOX,, which contains the result of evaluating the expression EXP with
the variable values of snapshot SNAP;.

The arithmetic involved in the evaluation of the expression is performed with numbers
expressed in an internal form consisting of strings of the digit one. The metano-
tion MAXINT is used to apply the implementation-defined restriction on the maximum
value that can be taken by an integer value.

A similar technique is used to define the semanties of all the ASPLE statements. The
series of snapshots traces the execution of the program, and the output file shows the result
of the computation.

Although the two-level form of W-grammar seems complex, the consistent use of the
underlying derivation tree is claimed to give the model an inherent simplicity.

3. PRODUCTION SYSTEMS AND THE AXIOMATIC APPROACH

We now explore the use of Ledgard’s Production Systems [1.2, 13] and Hoare’s axiomatic
approach [H1] to define the syntax and the semantics of ASPLE. The Production Systems
approach has had a long history, stemming originally from the Production Systems de-
scribed by Post [P1] and later developed by Smullyan [S3], and by Donovan and Ledgard
[D2]; Ledgard continued to develop and describe the approach in writings which, after
several iterations, resulted in [L3].

A Production System is a generative grammar somewhat like BNF. Compared with
BNF, Production Systems possess an additional power that allows one to define sets of
n-tuples and to name specific components of n-tuples. These capabilities are sufficiently
powerful to describe any recursively enumerable set, including the set of syntactically
legal programs in a language and the translation of those programs into a target language.

In addition to the use of a theoretically complete formal system, the recent development
of the Production Systems notation has been mainly guided by principles believed im-
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portant to a clear and coneise notation. These principles include: 1) the strict adherence
to a given underlying formal system, allowing only abbreviations that can be mapped
directly into the underlying notation; 2) the isolation of the context-free requirements
from the context-sensitive requirements on syntax; 3) the belief that many aspects of a
definition are better suited to an algorithmic (versus generative) notation. These principles
are more fully described in [L3].

Hoare’s axiomatic approach is used as a target language to define the semantics of ASPLE
and is discussed in the Subsection, Semantics Using the Axiomatic Approach [see page 224].

Syntax Using Production Systems

A definition of the complete ASPLE syntax, including context-sensitive requirements, is
given in Table 3.1. To understand this definition, the concept of a syntactic “environment”
must first be clarified. An environment is a correspondence between identifiers and modes
derived from ASPLE declarations. An environment is computed by applying the function
DERIVED ENYV [PS26]-[PS27] to the declare train of a program. For example, applying
this function to the declare train:

int 4;
ref int B;
ref ref int C

yields the environment:

pn = {A — REF INTEGER,
B — REF REF INTEGER,
C — REF REF REF INTEGER}

To specify the context-sensitive requirements of ASPLE, several other functions are
defined. The DOMAIN [PS48] of an environment p is the list of identifiers oceurring in p.
For example, using p; from the preceding environment:

DOMAIN(p)) = A,B,C

The function DERIVED EXP MODE [PS28]-[PS37] operates over pairs. Given an ex-
pression and an environment, this function yields the mode of the expression obtained by
using the modes of the identifiers given in p. Using p above:

DERIVED EXP MODE(B : p;) = REF REF INTEGER
DERIVED EXP MODE(A+-B : p;) = INTEGER

The derived mode of A + X in p is undefined (in the sense that it is not derivable) since X
has not been declared. A function DERIVED PRIM MODE [P$38] is also defined, which,
given an expression and an environment, yields the primitive mode obtained by deref-
erencing the derived mode to obtain one of the primitive modes, INTEGER or BOOLEAN.
For example,

DERIVED PRIM MODE(B : p1) = INTEGER
DERIVED PRIM MODE(A+B : p,) = INTEGER

Similarly, the functions PRIM_MODE [PS$39]-[PS41] and NUM REFS [PS45]-[PS47],
when applied to a mode, yield the corresponding primitive mode and the number of refer-
ences. For example,

PRIM MODE(REF INTEGER) = INTEGER
NUM REFS(REF INTEGER) =1

Next consider the production [PS07] for assignment statements:
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[(Main Productions]
[psot] prog PROGRAM <begin dt ; st end>
« p = DERIVED ENV(dt) & DIFF IDLIST<DOMAIN(p)> &
(411 deelared identifiers must be different]
LEGAL<st:p> & nl 2 PROGRAM LENGTH(*),
[The statement train must be legal in p;

n is the maximum program length]

[pso2] 4t DECLARE TRAIN <de! , ..., dcl >
1

+ n 2 NUM DECLARED IDS(*),
. PALECS L Ta A R L)

[n 18 the maximum number of declared identifiers]
2

[PS03]  dct DECLARATION <m T, e, Tdp
+ DIFF IDLIST<id , ..., id >,
1 n
[Ps04] m MODE <int | bool | ref m>.
frPso5] st STM TRAIN <s*m1, e s+mn> & LEGAL < #:p>
« LEGAL<s1’m1-p> & & LEGAL <s‘fm,_1 p>.

[A statement train is legal in p only if all contained
statements are legal in 7]

[pso6] stm STATEMENT <stm>
< ( ASGT STM<stm> | COND STM<stm> | LOOP STM<stm> | IO STM<stm> ).

Cpsa73 stm ASGT STM <id -= exp> & LEGAL <*:p>

« LEGAL<id:p> & LEGAL<exp:p> &

dml = DERIVED EXP_MODE(id:p) & dm_ = DERIVED EXP MODE(exp p)

PRIM MODE(dmz) = PRIM MODE(dmr) &

[The primitive modes of id and exp in p must be identicall

n = NUM REFS(dm ) & n_ = NUM REFS(dm ) & n < n_+ 1.
g L =" P e RN, L

r

[The mode of id must be obtainable from the mode of exzp by
deferencing exp]
[psos] stm COND STM <if exp then st fi> & LEGAL <#:p>
+« LEGAL<exp:p> & LEGAL<st:p> &

DERIVED PRIM MODE(exp.p) = BOOLEAN.

[The mode of exp in p must be boolean])

fPs09] stm COND STM <if exp then sfz else st fi> & LEGAL <x.p>
« LEGAL<exp-p> &  LEGAL<st, p> & LEGAL<s1’2:p> &

DERIVED PRIM MODE(exp-p) = BOOLEAN.

TABLE 3.1. PropuctioN SysteEM SpECIFYING THE CoMPLETE SyNTaX OoF ASPLE
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Cpsto]

Cpsit]

(ps12]

fpPsi3]

[psi4]

[Psi5]

[Psi6]

[pPs17]

[psi8]

[rPs19]

[Ps20]

[ps2t]

stm

stm

stm

exp

exp

prim

prim

prim

prim

int
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LOOP STM <while exp do st end> & LEGAL <*.p>

« LEGAL<exp-'p> & LEGAL<st:p> &

DERIVED PRIM MODE(exp-p) = BOOLEAN.

10 STM <input id> & LEGAL <% p>

+« LEGAL<Id:p> .

10 STM <output exp> & LEGAL <x:p>,

« LEGAL<exp.p>.

EXPRESSION <fac> & LEGAL <x'p>

« LEGAL<fac p>.

EXPRESSION <fac + exp> & LEGAL <x p>
« LEGAL<fac:p> & LEGAL<exp'p> &

DERIVED PRIM MODE(fac.p) = DERIVED PRIM MODE(exp p?.

[The derived primitive modes of fac and ewxp
must be tdenticall

FACTOR <prim> & LEGAL <x p>

« LEGAL<prim-p>,

FACTOR <prim * fac> & LEGAL <% *p>
+ LEGAL<prim:p> & LEGAL<fac p> &

DERIVED PRIM MODE(prim:p) = DERIVED PRIM MODE(fac:p).

PRIMARY <(exp, = exp ) texp, # exp,)> & LEGAL <*:p>

2
« LEGAL<epr‘p> & LEGAL<exp :p> &
I

DERIVED PRIM MODE(exp p) = INTEGER &
1

DERIVED PRIM MODE(epo:p) = INTEGER.
PRIMARY <(exp)> & LEGAL <x-p>
+« LEGAL<exp-p>.

PRIMARY <id> & LEGAL <x-p>

« LEGAL<id:p>.

PRIMARY <true | false | Tnt> &  LEGAL <x:p>.

INTEGER <dl"'dn>

+n_zn, [“3 is the maximum length of integerel
3

TABLE 3.1.—Conlinued

219
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[ps22] id IDENTIFIER <2 ... e & LEGAL <¥*:p>
1

R J ] € DOMAIN(p) & n >n.
1 n —_— 4

[Each.identifier must be declaved in p;
n, s the maxzimum length of an identifier]

[ps23] 4 DIGIT <o | 2| ... | 9>.
[Ps24] 2 LETTER <2 | B} ... | 2.
(ps251  dm DERIVED ASPLE MODE <INTEGER | BOOLEAN | REF dm>.

[Auxiliary Funetions]

fps26] DERIVED ENV(chl; e ;dcln)
= { DERIVED ENV(dcll), ... ,DERIVED ENV(dcln) }.
[pPs27] DERIVED ENV{m Idl, PR idn) B idl*dm, vee idn*dm

< dm I DERIVED MODE (m).

[Ps28] DERIVED EXP MODE(exp + fac :p) = {NTEGER
« DERIVED PRIM MODE(exp p) = INTEGER &
DERIVED PRIM MODE(fac.p) = INTEGER.

[Ps29] DERIVED EXP MODE(exp + fac p) = BOOLEAN

« DERIVED PRIM MODE(exp p) = BOOLEAN &

DERIVED PRIM MODE(fac-p) = BOOLEAN.

[Ps30] DERIVED EXP MODE(fac x prim p) = DERIVED EXP MODE(fac + prim .p).

[Ps31] DERIVED EXP MODE( (exp = expz) p) = BOOLEAN
- 1 Z

« DERIVED PRIM MODE(exp .p) = INTEGER &
DERIVED PRIM MODE(exp p) = INTEGER.
2
(PS32]  DERIVED EXP MODEC (exp # exp ) o) = DERIVED EXP MODE( (exp = exp )

[pPs33] DERIVED EXP MODE( (exp) o) = DERIVED PRIM MODE(exp-p).

[Ps34] DERIVED EXP MODE(id:p) = dm

« 1d+dm ¢ p, (id+dm must oceur in pJ

[Ps35] DERIVED EXP MODE(¢rue-p) = BOOLEAN.

H

[pPs36] DERIVED EXP MODE(false:p) = BOOLEAN.

{Ps37] DERIVED EXP MODE(int p) = INTEGER,

[ps3s] DERIVED PRIM MODE(exp-:p) = dm'

< dm = DERIVED EXP MODE(exp-p) & dm' = PRIM MODE(dm).

TABLE 3.1.—Continued
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[ps39] PRIM MODE (INTEGER) = INTEGER.

[Psa0] PRIM MODE (BOOLEAN) = BOOLEAN.

[Ps41) PRIM MODE(REF dm) = PRI{M MODE(dm).
[Psa2] DERIVED MODE(int) = REF INTEGER.
[Ps43] DERIVED MODE(bool) = PEF BOOLEAN.

[Ps4a] DERIVED MODE(ref m) = REF dm

+ dm = DERIVED MODE(m).

[Psas] NUM REFS{INTEGER) = 0.
[pPsa6] NUM REFS(BOOLEAN) = 0.
[PS47] NUM REFS(REF dm) = 1+ NUM REFS(dm).
[Ps48] DOMAIN( {1id +dm , ... ,1d _»dm_} )
1 1 n n
2 id, ... ,0d .
1 n

[PS49]  DIFF IDLIST<A | 1d>.
[The symbol "A" denotes the empty list]

[Pss50] DIFF 1DLIST<%, 1d>

« LEAN & idén.

[Functions for Implementation Dependent Requirements)

n
= NUM DECLARED !DS(chI) + ... + NUM DECLARED IDS(chn).

[PS51] NUM DECLARED lDS(dcll; oo, del )

[PS52] NUM DECLARED IDS(m T4, ey 1)

Z n.

LPS53]  PROGRAM LENGTH(prog) = ..

[Implementation defined function to compute the length

of a program nlj

TABLE 3.1.—Continued
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[Ps07] stm ASGT STM <id := exp> & LEGAL <x:p>
«— LEGAL<id:p> & LEGAL <exp:p> &

dm:= DERIVED EXP MODE(id:p) &

dm, = DERIVED EXP MODE(exp:p) &

PRIM MODE(dm;) = PRIM MODE(dm,) &
[The primitive modes of id and exp in p must be identical]

n; = NUM REFS(dm;) & n. = NUM REFS(dm,) & n:< n: 4+ 1.
[The mode of id must be obtainable from the mode of exp by deferencing exp)

In detail, this production may be read: A string of the form
id := exp
is an assignment statement, and the pair
idd ;= exp :

is a member of the set LEGAL, if
1) id is an identifier that is legal in p, and
2) exp is an expression that is legal in p, and

3) dm. is the derived mode obtained by applying the function DERIVED EXP MODE

to the id on the left side in p, and

4) dm, is the derived mode obtained by applying the function DERIVED EXP MODE

to the exp on the right side in p, and

5) the function PRIM MODE maps dm; and dm, into identical primitive modes, and

6) n.is the integer obtained by applying the function NUM REFS to dm¢, and
7) n, is the integer obtained by applying the function NUM REFS to dm,; and
8) n. is less than or equal to n, + 1.

Conditions (3) through (5) indicate that the primitive modes of id and exp must be
identical, and conditions (6) through (8) indicate that the mode of id must be obtainable

by sufficiently dereferencing exp.

In production [PSO7], the symbol, “*#” in the conclusion for LEGAL is used in place

of the string:
id := exp

being defined, and the production system variables id, exp, p, dm, and n (possibly with
subscripts) are defined in subsequent productions. The underline on the symbol “:=" is
used to specify that the “:”” is an objeet symbol, and not a Production System punctuation

mark separating items in an n-tuple.
More briefly, we shall read several productions from Table 3.1.

{pso1])
prog PROGRAM <begin dt ; st end>
«— p = DERIVED ENV(dt) & DIFF IDLIST <DOMAIN(G)> &
[AUl declared identifiers must be different]
LEGALSst p> & m 2> PROGRAM LENGTH (*).

[The statement train must be legal in p; m1 is the maximum gprogram length]

A string of the form
begin dt ; st end

is a valid program if
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1) pis the environment derived from the declare train dt, and

2) the domain of p is a list of different identifiers, and

3) st is a statement train that is legal in p, and

4) = is greater than or equal to the (implementation defined)
length of the program.

[ps05]
st STM TRAIN <stmy; ... ; stm,> & LEGAL <x:p>
— LEGALSstm;:p> & ... & LEGAL <{stm,:p>.
[A statement train is legal in p only if all contained statemenls are legal in p}

A sequence of statements of the form
stmy ; --- ; stm,

is a statement train, and the statement train is legal in p if stm, through stm,, are state-
ments that are legal in p.

[psi14]
exp EXPRESSION <fac + exp> & LEGAL <*:p>
«— LEGALKLfac:p> & LEGAL<exp:p> &
DERIVED PRIM MODE(fac:p) = DERIVED PRIM MODE(exp:p).
[The derived primitive modes of fac and exp must be identical)

A string of the form
fac + exp

is an expression, and the expression is legal in p, if
1) fac is a factor that is legal in p and
2) exp is an expression that is legal in p and
3) the derived primitive mode of fac in p is identical to the derived primitive mode of
exp in p.

Examples of Production Systems

We now consider two ASPLE programs, the first of which is syntactically legal, and the
second of which is not. The two programs differ only in the declared modes of B.

program 1 program 2
begin begin
nl A; nt A;
ref int B; int B;
ref ref int C; ref ref int C;
A := 100; A := 100;
B := A; B := A;
C := B; C := B;
input C; input C;
output A output A
end end

.
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Using the productions for DERIVED ENYV [PS26]-[PS27], the environments for the two
programs are:

o e
{A — REF INTEGER, {4 — REF INTEGER,
B — REF REF INTEGER, B — REF INTEGER,
C — REF REF REF INTEGER} C — REF REF REF INTEGER}

From the premise LEGAL(st:p) in the production for PROGRAM [PS01], the statement
trains are legal only if the statement trains are legal usmg p and py, respectlvely Using
the production for STM TRAIN (PSO5], each statement in a statement train is legal only
if each individual statement is legal using p and p,, respectively.

Using the production for ASGT STM [PS07], a statement of the form:

id := exp
is legal in P if
1) dm, is the derived mode of id in p, and
2) dm, is the derived mode of exp in p, and
3) the primitive modes obtained from dm, and dm, are identical, and
4) the number of references in dm; is less than or equal to 1 plus the number of refer-
ences in dm,.

For programs 1) and 2), the statement “A := 100" is legal, since for both p; and ps:

dm. = DERIVED EXP MODE (4 :p)
= REF INTEGER

dm, = DERIVED EXP MODE (100 : p)
= INTEGER

PRIM MODE(dm,) = INTEGER
PRIM MODE(dm ) = INTEGER

n; = NUM REFS(dm.)

=1

n, = NUM REFS(dm,)
=0

n; = N, + 1

On the other hand, the assignment.“‘C := B” is legal in py, but not in p,, since:

for py ‘ for p,

n; = 3 ng = 3

n, =2 n. =1

n;=mn, 41 n:>n+1

The productions given in Table 3.1 should now be clear. For more detail on the Produc-
tion Systems notation, see [L3].

Semantics Using the Axiomatic Approach

The Production Systems approach given here relies on another language for defining se-
mantics. The only role of Production Systems in defining “semanties” is the specification
of a mapping from legal programs into a target language that expresses the meaning of a
program. In this subsection, we use the axiomatic approach of Hoare [H1] as the basis for
such a target language. A mapping of syntactically legal ASPLE programs into this target
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language is given in Table 3.2. Production Systems could be used directly to define se-
mantics by specifying a mapping:

program :input file — output file

giving the corresponding output file for each input file and each legal program. This ap-
proach has not been tried.

The axiomatic approach differs significantly from most semantic approaches in that the
method is entirely “synthetic’” and thus does not rely on any execution model. To define
semantics using an axiomatic approach, the following question is addressed: Upon termi-
nation of a program, what assertions can be made? The axiomatic approach of Hoare [H1]
is based on the first-order predicate calculus [M3] which permits assertions about the mem-
bership of objects in sets and the results of applying operations to objects; for example,
the kinds of objects stored on some external medium and the values of expressions. To de-
fine the semantics of ‘“programs,” a correspondence between programs and the relevant
assertions must be defined.

This correspondence has two basic parts: a specification of assertions that can be gen-
erated directly from the program text, and a specification of points where the user must
derive new assertions based on those already generated. In the paper by Hoare [H1], this
issue is only lightly touched upon. We believe this separation to be important, for it shows
the user when to proceed automatically and when to make “mental leaps” in the attempt
to prove a program correct. However, there is some research being done on the automatic
generation of such deductions.

In the specification of ASPLE semantics here, we adopt the following conventions:

1) SEM PROG, SEM STM, and SEM EXP are the names of Production System func-
tions that map legal ASPLE constructs into assertions.

2) a, ay, a,, ete., are Production System variables denoting members of the set of asser-
tions. The class of well-formed assertions is not defined here, but may be obtained
from [M3].

3) PROVABLE is a Production System predicate naming a set of ordered pairs (a; : az),
where a; and a, are assertions. This predicate is true only if a; can be derived from
a; by the user. The rules used to derive a, from a; are those of the predicate calculus.

The first production of Table 3.2 specifies the assertions for programs:

[pTO1]
SEM PROG (begin dt ; st end) = true {+} a
« a = DERIVED ASSERTIONS(dt) &

a’ = a A aprim A\ (Fin = 8) A (Fout = empty file) &

p = DERIVED ENV(dt) & SEM STM(st:p) = a’ {st} a”.
[@prsm 2 Gune /\ Qooot A\ Grer /\ Gpus are the respective asseriions for
integers, booleans, reference and files]
[8 i the user supplied input file]

This production may be read as follows. If:

a is the assertion derived from the declare train dt, and

Aprim 18 the assertion for primitive objects: integers, booleans, references, and files, and

Fi, is the user-supplied input file 8, and

Fout is the empty file, and

a 1s the assertion a A aprim A (Fin = 8) A (Four = empty file), and

a” is the assertion obtained after execution of the statement train, given that a’ is true
before execution of the statement train;

then
a” is the assertion upon termination of the program.
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[PTOI]  SEM PROG(begin dt , st end) = true {x} a"

« a = DERIVED ASSERTI!IONS(dt) &
] = = =
a' = a A aprlm A (Fln BY A (Fou+ mpty fite) &
p = DERIVED ENV(dt) & SEM STM(st p) = a' {st} a".

. 2 a, A Aa A R sse 4
[appzm int o0l ref alee are the respective a rtions for
integers, booleans, reference and files]

[B is the user supplied input file]

[4ssertions for Declarations]

[pPT02] DERIVED ASSERTIONS(chl, PN ,dcln) H (a1 A L. A an)
« a1 = DERIVED ASSERTIONS(chl) & .. & a, = DERIVED ASSERTIONS(chn),
[pT103] DERIVED ASSERTIONS(m idl, ey idn) = (id edm) A ... A (fdnedm)
1

< dm = DERIVED MODE(m).

[Agsertions for Statements]

4 H *} &
[PTO4]  SEM STM(sfml,sfmz pstm o 0) 2 *} &\
- PROVABLE<a1 a;> & SEM STM(sTm1 p) = a' {stm } a &
—_— 1 1 2
PROVABLE<a a'> & SEM STM(s+tm p) = a' {stm } a &
2 2 E— 2 2 2 3
&
. - 1]
PROVABLE<an aé) & SEM STM(sTmn p) = al (sfmn} LI &

. 1
PROVABLE(an+1 an+1>.

[Before or after statements, a new assertion ai may need to be
created and derived from aij

1d, ¢
L
fpT105] SEM STM(1d_:= ldrlo) = a A (deref(sd_,n) € dm_) {x} a
b= derettid ,n) - "
- dml = DERIVED EXP MODE(1d g o) & dm = DERIVED EXP MODE(C1d . p) &
r
n = NUM REFS(dm > & n_ = NUM REFS(dm ) & n=(n -n )+ 1.
2 13 r R r r 2
[ghe ;ssign@ent of an identifier on the:?ight side requires
ereferencing to obtain a mode compatible with the 4 L
on the 1efs Side] P e e identifier
[Checking that the dereferenced value of Ldr 18 eontained in dm
r
ensures that idr is not undefined]
_ 1d+
LPTO6]  SEM STM(1d = exp -~ 0) = 2, v A (exp' e dm) (¥} a
+ exp' = SEM EXP{exp.p) &
dm. = DERIVED EXP MODE(exp.p) &  NUM REFS(dm ) = 0.

[The assignment of an expression that is not an identtfieg simply
changes the value of the target identifier on the left side]

CChecking that exp' is contained in dm, ensures that exp’ s .

not undefined. ]

TABLE 3.2. ProbuctioN SYsTEM MarpING LeEGAL ASPLE PrOGRAMS INTO VERIFICATION RULES
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[PT07] SEM STM(if exp then st fi  p) = a {*} a!
< exp' = SEM EXP(exp p) & SEM STM(st p! = a A exp' {st} a' &

PROVABLE<a A not(exp!') al>.

[PTO8] SEM STM(Zf exp then sfl else 5*2 fi p) =z a {x} a'
« exp' = SEM EXP(exp p) & SEM STM(sf1 p) = a A exp'(sf[} a' &
SEM STM(st p)} = a A notlexp') (sTZ} a',
2t > M 2 nor
[PT09] SEM STM(while exp do st end p) = a {«x} ahy A not(exp')
+ exp' = SEM EXP(exp p) & PROVABLE<a - IS &
]
SEM STM(st p) = 3,0y A exp {st} I
[ainv 18 the wnvariant for the loop]
[PTI0] SEM STM(<nput 1d . p) = (nof(eof(Fln)) A (ilﬁil(F|n) e dm) A
1d'y
in
1d' = deref(1d,n) A 2 ) *} a,

flrsf(pln) resT(Fln)

« dm = DERIVED PRIM MODE(td o) & n = NUM REFS(dm) - 1,

[{The first value in F,, must be compatible with the mode of id]

[Pereferencing id by n refs must yield an identifier]

F
CPTI1]  SEM STM(output exp ) = 5 out

1
caf(Fou+’ exp')

{x} a

+~ exp' = SEM EXP{exp p).

[4ssertions for Expressions]

CPTI2]  SEM EXP(exp + fac p) = sumlexp',tac!')
« exp' = SEM EXP(exp.p) & fac' = SEM EXP(fac'p) &
DERIVED PRIM MODE(exp p) = INTEGER.

CPT13] SEM EXP (exp + fac

"

o) orlexp', fac!)
“ exp' = SEM EXP(exp p) & fac' = SEM EXP(fac p) &

DERIVED PRIM MODE (exp.o) = BOOLEAN.

LpTi4] SEM EXP(fac % prim;p) = product(fac',prim')
+ fac' = SEM EXP(fac'p) & prim' = SEM EXP(prim-p) &
DERIVED PRIM MODE(prim.p) = INTEGER.
[PTi5] SEM EXP(fac ¥ prim.,) = and(exp',prim')
« exp' = SEM EXP(fac p) & prim' = SEM _EXP(prim p) &

DERIVED PRIM MODE(fac.p) = BOOLEAN .

TABLE 3.2.—Continued
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[PTi6]  SEM EXP( Lexp1 = expzl p) = eguai(exp;, exp;)
« exp' £ SEM EXF‘(expl p) -3 exp; = SEM EXP(exDz.p)_
N FoA=SR Al EA-LN 1238

CPTI7]  SEM _EXPC (exp, # expzl p) =z no?(egua,(exp;, exp;))
« exp' = SEM EXP(exp p) & exp; z SEM EXP(exp2 o).
1 — 1

CpT1ED SEM _EXP( (exp) . p) = exp'
« exp' = SEM EXPlexp p).
[PTI9] SEM EXP(i1d o) = dereflid,nm)+
« dr z DERIVED EXP MODE(id-p) & n = NUM REFS(dm) - 1

[Identifiers in expressions must be fully dereferenced]

[p120] SEM EXP(int'p) z unt,
[pT211] SEM EXP(true p) = frue,

[PT22]  SEM EXP(false'p) = false,

e a ti ) mitt s a a A a A a A@ge, 3
[Th ssertions for pr tive value re bool ref file-

a__ .
prim wnt

(4ssertions Typs for integers; IMAX 1s the wmplementation defined quantity ns]

[PT23] 0,IMAX € INTEGER

[pPT24] (int # IMAX) > succlint) e INTEGER.

[pr2s] (1nt = IMAX) > . . [Implementation defined result upon arithmetic overflow]
(PT26] (int # O) > pred(int) e INTEGER.

[pPT27] sum(int,0) = int.

{pT128] (rnt  # IMAX) A (lnT2 #0) = suw<lnf1,lr*2>
1 -

= sum(succ(tnt J),predint J)
- 1 h— 2

[The conventional axioms for non-negative integers]

[4ssertions 2001 for pooleansl]

fPT29] true,false ¢ BOOLEAN.

frPT30] and(true,true) = true.
[PT31] and(true,false) = false.
[The conventional axioms for boolears]
[Assertions Qs for dereferencing, v & IDENTIFIER u INTEGER u BOOLEAN]

CpPT32] deref(v,0) = v

[pT33] (id+y = v) A (n 2 1) > (deref(i1d,n) = deref(v,n~1))

TABLE 3.2.—Continued
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(Assertions Tpite for input and output files]

[ib € INTEGER u BOOLEAN, f e FILE]

[PT34] empty frle e FILE.
[PT35] ne > FILELENGTH(f) o cat(ib,f) e FILE.

[FILELENGTH is the implementation defined function for computing
the file length nGJ

[pT36] first(cat(ib,f)) = ib.

[pPT37] rest(cat(ib,f)) f.

[PT38] eoflempty file) = true.
[PT39] eoflcat(ib,f)) = false.

TABLE 3.2.—Continued

The assertions derived from ASPLE declare trains [PTO3] are simply the assertions of set
membership for each declared identifier. For example, the declare train:

ref int A;
ref bool B

yields the assertion

(A € REF REF INTEGER) A (B € REF REF BOOLEAN)
Each statement in a statement train gives rise to a produetion of the form:

SEM STM(stm) = a; {*} a,
<P, P2, Pa

Here a, is any assertion that is true before execution of the statement; a, is the assertion
derived from a; after execution of the statement; and p; through p, are Production System
predicates that must be true in order to generate a, from a;.

The semantics of assignment statements and while-do statements are particularly im-
portant. For assignment of identifiers, we have:

[p105])
SEM STM(d, := idi:p) = ageesoa,,m A (deref(id;, n) ¢ dm,) {+] a
« dm; = DERIVED EXP MODE(id;:p) & dm, = DERIVED EXP MODE(id.:p) &

n, = NUM REFS(dm;) & n.= NUM REFS(dm;) & n= (n. — n;) + L
[The assignment of an ideniifier requires dereferencing the identifier
to oblain a mode compatible
with the identifier on the left side]
[Checking that the dereferenced value of 1d, is contained tn dm, insures that id,
ts not undefined. )

This production may be read as follows: The assertion a may be derived from the assertion:
id: }
a A (deref(id;, n) € dm,)
deref(id, n)
if:
dm, and dm, are the derived modes of id; and id, in p, and
n; and n, are the number of refs in dm, and dm,, and
nequals (n, — n¢) + 1.

The arrow pointing downward, “ ] ,” denotes a reference to a value. In general, the nota-
tion ay denotes the assertion obtained from a by replacing occurrences of x by y. In the
preceding production, y is deref(id,, n), that is, the dereferenced value of id,. The assertion
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that y € dm, insures that this value must be well defined, that is, not undefined. In a
sense, the proof rule for assignment appears to be the wrong way around, for the assertion
replacing id: | by a value must be derivable before the statement. This initially counter-
intuitive definition reflects two facts:

® the dereferenced value of id, must be obtained before the statement is executed;

® any invariant derived after execution of the statement must be true when id.}

is replaced by the deferenced vaiue of id, before execution of the statement.
For assignment of expressions (that are not identifiers), we have

[pTO4]
SEM STM(id := exp :p) = aexp A (exp’e dm,) {*} a
— exp’ = SEM EXP(exp'p) &
dm; = DERIVED EXP MODE(exp'p) & NUM REFS(dm;) = 0.
[The assignment of an expression that is not an identifier stmply changes the
value of the larget 1dentafier on the left side]
[Checking that exp’ is conlained in dm. ensures that exp’ 1s not undefined.]

[

The assignment of expressions can only be made to identifiers with one syntactically de-
clared reference. Since the rules for expression semantics result in primitive values that are
integers or Booleans (with zero references), generation of the new assertion results from a
simple replacement.

For while-do loops, the rule is:

[PT09]
SEM STM (while exp do st end : p) = a {*} ainv /\ not(exp’)
«— exp’ = SEM EXP(exp:p) & PROVABLE<a :aijmv &
SEM STM(st: p) = ajnv /\ exp’{st} ajnv.

[@ens 78 the Tnvariant for the loop]

Here the predicate PROVABLE must be used to derive the loop invariant aj,y from any
assertion a that is true before the loop, and SEM STM(st : p) must be shown to not alter
the truth of aj,y when the value of exp’ is true. The invariant a;,y must be devised by
the user. The creation of this invariant is the major mental leap required by the user in
the correctness proofs of ASPLE programs.
For statement trains [PTO4], the generation of a terminal assertion involves two steps:
® the generation of an assertion a; obtained from the assertion a; from the previous
statement or declaration;
® a proof that the assertion a;,; after each statement is provable from the assertion
a;’ obtained from execution of the previous statement.
In particular, the semantics of a statement train is specified in {PT04]

[PTO4]
SEM STM (stm; stms . .. ; stm, :p) = ap {*} a'nq1
—~ PROVABLE{a; :a1”> & SEM STM(stm;: :p) = a1’ {stm;} a2 &
PROVABLE<a; : a2”> & SEM STM(stm; :p) = a2’ {stm,] a3 &
. &
PROVABLE a, : ap,"> & SEM STM(stmyp, : p) = an’ {stmp} anp1 &
PROVABLE<a, 1 : a'nyp).
[Before or after statements, a new assertion a,’ may need to be created and derived
froma,]
The creation of new assertions ay’, a;’, - - - , ap’, and a:.“ that are provable from ay, a3, - -+,

an, an reflect the mental leaps required by the user regarding proofs about subsequent
statements.

The semantics for ASPLE expressions are quite straightforward. For numeric expres-
sions, for example:
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112} SEM EXP(exp + fac :p) = sumfexp’, fac’)
«— exp’ = SEM EXP(exp:p) & fac’' = SEM EXP(fac:p) &
DERIVED PRIM MODE(exp: p) = INTEGER.
[PT14] SEM EXP(fac * prim:p) = product(fac’, prim’)
«— fac’ = SEM EXP(fac: p) & prim’ = SEM EXP(prim:p) &
DERIVED PRIM MODE (prim: p) = INTEGER.

the basic axioms for “sum” and “product” over positive integers follow the usual rules
for finite arithmetic:

[pT23] 0, IMAX ¢ INTEGER.
{PT24] (int # IMAX) O succ(int) e INTEGER.
[PT261 (int 2 0) DO pred(int) c INTEGER.

and so forth. The number IMAX is the implementation defined maximum integer ;.
For deferencing identifiers we have:

(PT32} deref(v, 0) = v
that is, dereferencing a value by zero refs yields the value itself, and
[P133] Gd]=v) Amn>1) O (deref(id, n) = deref(v, n— 1))

that is, dereferencing a value by n refs results in removal of n refs.

The axioms for ASPLE files are straightforward, and are given in Table 3.2.

As a final note observe that in the axiomatic approach a program may have many “se-
mantics” in the sense that several mutually consistent final assertions are derivable from
a given program.

Examples of the Axiomatic Approach

Consider the following simple ASPLE program:

begin [01]

mtN, I, SUM; [02]

N := 10; [03]

I:=0; [04]

SUM := 0; [05]

while (I # N) do [06]

I:=1+4+1; 07]

SUM = SUM + 1 [08]

end; [09]

output SUM [10]

end f11)

For an empty input file 8, productions [PTO1] through [PTO3] specify that
p = [N — REF INTEGER,

I — REF INTEGER,
SUM — REF INTEGER}

a = (N € REF INTEGER) A (I € REF INTEGER) A (SUM ¢ REF INTEGER)
a = a A apim A (Fin = empty file) A (Fou. = empty file)
SEM STM(st :p) = a’{st}a”

The semantics of the program are specified by deriving a”, where st is the statement train
in lines [03] through [10].

Computing Surveys, YOI. 8, No. 2, June 1976



232 . M. Marcotty, H. F. Ledgard, and G. V. Bochmann

The semantics of statement trains allow the creation and derivation of new assertions
before using the semantic rules for each contained statement. From a’ we may create and
(trivially) derive the assertion

333 = (a' AN] =10) Ilvol
Using production [PT05] for assighment after line [03];-we may immediately derive
a’ A (N| =10)

it

=17}
Similarly, we may derive
ag = au A (Il =O) A (SUMl =O)

Before execution of the while loop, the loop invariant must be created. This invariant is
E=I]

awr = a A (1L <N A (SUML=(E )

k=0

This major mental leap is based on a proper abstraction from the while loop, that is, that
the assertion ay remains unchanged, that I | is always less than or equal to N | , and that
SUM | represents the sum of integers up to I }. This invariant is easily provable from
agw, where I | = 0.

From production [PT09] we must now prove that the statement train in the body of the
loop preserves the invariant apy,y, that is,

Ay A _nit(equal (IL,N]) {st} Ay
Since from
Ay A D_Ot(equal al s N 1))
we can readily make a mental leap to the assertion
, Rl |1 Il
ag = <ao4A (I| <N| +1)A (SUMl =< i k)))
k=0 i+
after execution of statement [07] we have
k=l | -1
ag = ayu A (I| <N| +1)A <SUM1 =( ZL, k))
k=0
Similarly, after execution of statement [08], we have
k=11
aw = au A (I] <N| +1) A (SUML =< i k)+Il>
k=0

from which we can create and derive the assertion
k=]

agp = au A (I} SNl)A(SUMl =<Z k)

k=0
which is precisely the loop invariant aj,y -
Accordingly, the semantics of the entire loop is specified as

amy A equal (Il ’ Nl)
from which we may assert
k=N | k=10
SUM | =<}: k)=<2k>=55
k=0 k=0
Production [PT11] thus specifies that

Four = cat(55, empty file)
which is the desired result.
The major issue left in the semantics of ASPLE is that of indirect addressing. Consider
the program given in Section 1, Informal Description of ASPLE {see page 197)]:
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begin [01]
tnt INTA, INTB: [02]
ref int REFINTA, REFINTB; [03]
ref ref int REFREFINTA, REFREFINTB; [04]

INTA := 100; [05]
INTB := 200; [06]
REFINTA := INTA; [07]
REFINTB := INTB,; [08]
REFREFINTA := REFINTA; [09]
REFINTA := INTB; [10]
INTB := REFREFINTA; [11]
input REFREFINTA; [12]
output REFINTB [13]
end [14]

For B, the user-supplied input file, equal to cat(300, empty file) after the statement [13]
we have the (partial) assertion

(INTA| =100)0 A (INTB] =3000 A (REFINTA|] =INTB) A
(REFINTB| = INTB)A (REFREFINTA | = REFINTA) A
(Fin = emptyfile) A (Foue = cat(300, empty file)

The generation of this assertion from Table 3.2 is left to the reader.

Finally, we discuss one important point. In the Production System given in Table 3.2,
no explicit mention is made of cases where syntactically legal programs result in semantic
errors. Like BNF and Production Systems with regard to the specification of syntax, se-
mantic errors in the axiomatic approach can be deduced only by the impossibility of deriving
a valid result. For example, in the semantic definition of assignment statements, the at-
tempt to evaluate an arithmetic expression containing an undefined identifier results in
an execution error. This error can only be deduced by observing that no assertions can be
derived from an identifier whose dereferenced value is not defined.

4. VIENNA DEFINITION LANGUAGE

One of the earliest proposals for the rigorous definition of a programming language was
Garwick’s suggestion that an actual implementation be used [G1]. Two major objections
to this technique are: 1) the inevitable encroachment of the host hardware into the language
being defined; and 2) the restricted availability of the definition. To escape these objec-
tions, the IBM Vienna Laboratories developed the idea of a hypothetical machine, as pro-
posed by McCarthy [M1, M2], Landin [L1], and Elgot [E1], on which to make an imple-
mentation. This work led to the Vienna Definition Language (VDL) and was used origi-
nally for a formal definition of PL/I [L6).

Overview of VDL

In VDL a formal definition is based on the concept of an abstract machine (see Figure 4).
The meaning of a program is defined by the sequence of changes in the state of the abstract
machine as the program is executed. The rules of execution are defined by an algorithm,
the Interpreter. To make a distinction between those properties of a program that can be
determined statically and those that are intrinsically connected to the dynamics of the
program’s execution, the original program is transformed into an abstracted form before
execution. This transformation is performed by another algorithm, the Translator, which
corresponds to the early phases of a compiler in a real computer system. During the trans-
formation, the context-sensitive requirements on syntax can be checked.
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ABSTRACT
MACHINE
INTERPRETER
Ne— ) ABSTRACTED)
g TRANSLATOR —>
7\ J PROGRAM | OUTPUT
> "DaTA
L T e —
DATA

Figure 4. Schematic of a programming language definition in VDL.

The notation of VDL is fully defined in {14, L6, L7, W1]. In this section we give a brief
description of notation, introducing only those parts that are needed for the definition of
ASPLE.

In VDL both the abstract machine and the program are objects. An object can be repre-
sented as a tree. There are two classes of objects: elementary objects, with no components;
and compostte objects, with a finite number of immediate components that are also objects.
Thus, in the tree representation, an elementary object is a terminal node and a composite
object is a nonterminal or branch node.

Figure 5 shows a representation of a composite object named A. This object has three
immediate components, each uniquely named by its selector, x, , x,, or x;. We denote the
immediate component x, of A by x,(A). This is the elementary object B. Similarly, we
denote the elementary object D by x,-x;(A) since D is the x, component of x;(A). The
selector x,-xs is a composite selector. The application of a selector to an object that has no
selector of that name yields the null object, denoted by €. For example, x;(A) = @ and

Xs® Xa(A) =,

Figure 5. Composite VDL object.

The composite object x,(A) has two components named x, and x;. These components
are the elementary objects D and E, respectively. We may describe the construction of
x:(A) by showing it as a set of two selector-object pairs:

x:(A) = (Kx : D>, <x 1 E>)
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Similarly, we can show the construction of the composite object A by a set of three selector-
object pairs:

A= (Ga:B>, Ou O, At (K : D, <xs 1 E>)D)

The object in the third of these pairs is the composite object xs(A) whose composition was
shown earlier.

To specify subclasses of the class of objects, VDL uses predicates that are true for mem-
bers of the subclass and are false for all other objects. All such predicates have the prefix
is-, for example, is-2(Z) will be true if and only if Z is a null object.

Objects can be modified by using the u operator. The result of u(A: <x, : F>) is an object
constructed from a copy of A by:

1) deleting the component x,(A), if it exists;

2) adding a component <x; : F>.

The result of u(A: <x: : F>), where A is the object A of Figure 5, is a copy of A with the
elementary object B replaced by the elementary object F.

A special case of the u operation is the py operator which constructs a new object from a

set of selector-object pairs. For example, the object A can be constructed by:

wo(<a 1B, Oe O, <xs (Ko 1 D, < : E>)D)

Objects that represent lists are often used in VDL. If L is an objeet that represents a
list of n objects, none of them null, then the elements of L arenamed by the selectors, elem(i),
1 £ i £ n. For such a list L, VDL also makes use of the elementary functions:

length (L) value n;

head (L) object selected by elem(1);

tail (L) objects elem(i) (L), 2 < i < n, in the form of a list with selectors
elem(j), 1 < j £ n—1, respectively;

L, ~L, concatenation of the two lists L; and L, to form a single list.

By convention, all objects that satisfy the predicate is-x-list are lists each one of whose
components satisfies the predicate is-x. The empty list is denoted by < > and is different
from the null object Q.

Abstract Machine

The abstract machine used to define ASPLE, the ASPLE Machine, is specified by its
machine state £. This is an object satisfying the predicate is-state which is defined by four
predicate definitions in Table 4.1. Rule [M10] in this table:

[mo1] is-state = ({program: is-abs-program),
labstraction of concrete program]
{control: is-abs-contrel>,
[control of abstract machine]

{store: is-abs-storage>,

{input: is-abs-const-list>,
[input file]

<output: is-abs-const-list>
[output file]

Computing Surveys, Vol, 8, No. 2, June 1976



236 . M. Marcotty, H. F. Ledgard, and G. V. Bochmann

shows that a composite object £ satisfying the predicate is-state has five components:
1) program: the abstracted program to be interpreted. This component will be de-
seribed in the Subsection, VDL Representation of Programs [page 2371.

2) control: the control part of the Machine.

3) store: the storage part of the Machine.

4) input: the input file.

5) output: the output file.

The control part determines the action of the ASPLE Machine as the abstracted pro-
gram is interpreted. The object selected by control is an object that satisfies the predicate
is-control. Thisis a stack of machine operations that will be described in the Subsection,
VDL Interpreter [page 248].

The storage part of the ASPLE Machine is defined by the predicate definition [M02]:

Moz} is-storage = ({<id:is-abs-value> | is-abs-identifier(id)})
[each element of the set of components of the storage part is selected by an identifier and is
an object satisfying is-abs-value]

The notation here is similar to set notation and defines the storage part as a finite set of
selector-object pairs of the form (id: is-abs-value); a selector id and an object that satis-
fies the predicate is-abs-value. The “-abs-” indicates that the object is part of the ab-
stract machine. The latter part of the definition states that the selector id satisfies the
predicate is-abs-identifier. The value part of the pair represents an object that can be
obtained by applying an identifier as a selector to the storage component of the ASPLE
Machine.
The predicate is-abs-value is defined by the predicate definition [M03]:

[mo31 is-abs-value = is-abs-const \/ is-abs-identifier

By this rule, an ASPLE value is either a constant or an identifier. The input and output
files, input(t) and output(f) respectively, are objects satisfying the predicate is-abs-
const-list. These objects are therefore lists of objects each element of which satisfies is-
abs-const. By rule [M04]:

[M04] is-abs-const = is<abs-boolean V/ is-abs-integer

an object that satisfies is-abs-const will be one that satisfies either is-abs-boolean or
is-abs-integer.
The second part of Table 4.1 defines the initial state of the ASPLE Machine, £:

£ = p ({program: translate(PROG)>,
[¢nitialized by performing translate function on the concrete program PROG]
<{control: interpret-program>,
{store: Q>
<input: [input file for program, oblained from a source outside this definition}>
Coutput: is-<{>>) [oulput file i3 initially empiy}

The program part of the ASPLE Machine is an abstracted ASPLE program, described
in the Subsection, VDL Representation of Programs [page 237]. The program part is ini-
tialized by attaching with the selector program the object obtained by evaluating the func-
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[MO1] 1s-state = (<program 1s-abs-program>, [abstraction of conerete program]
<control- 1is-abs-control>, [control of abstract machinel
<store is-abs-storaces>,
<1nput 1s-abs-const-11st>, [input filel
<output 1s-abs-const-l1st>) [output file]

[M02] 1s-storage = ({<1d 1s-abs-value> || 1s-abs-1dentifier(1d)})

Leach element of the set of components of the storage
part 1e selected by an tdentifier and 18 an obgeet
satiafying 1s-abs-value]

[M03] 1s-abs-value = 3ys-abs-const v 1s-abs-identifier

[M04] 1s-abs-const = 1s-abs-boolean v 1s-abs-integer

[INITIAL STATE OF THE ASPLE MACHINE]

g = p0(<program. translate(PROG)>, [initialized by performing transiate function on the
conerete program PROG]

<control- 1nterpret-program>,

<store Q,
<input [tnput file for program. obtained from a source outside this definitionl>
<output: 15-<>>) [The output file is wnitially empty]

TABLE 4.1. DeriNITION OF THE ASPLE MACHINE STATE

tion translate with PROG, the VDL representation of the original source program. The
Translator is described in the Subsection, VDL Translator [page 241)]. The control part of
the ASPLE Machine is initialized to the machine operation interpret-program, which is
described in the Subsection, VDL Interpreter [page 248). The storage part of the ASPLE
Machine is initially empty, reflecting the ASPLE rule that the values of all variables are
undefined at the start of execution. The input file is initialized to the input data for the
program and the output file is initialized to an empty list.

VDL Representation of Programs

The input to the ASPLE Translator is a class of objects, concrete-programs, that satisfy
the predicate is-c-program defined in Table 4.2. The “-¢-” indicates that the object is
part of the concrete program. This definition is derived directly from the BNF syntax of
ASPLE shown in Table 1.1. There is a one-to-one correspondence between concrete pro-
grams and the character-string representation of well-formed ASPLE programs.

The definition of concrete programs makes use of certain standard selectors, s, s, - - -
assumed to be mutually distinguishable. Objects with these selectors are objects whose
structure differs from VDL lists only in that some of the components may be null. These
objects are referred to as “‘slists.” A function, slength, that corresponds to the length
function for VDL lists, gives the minimum value n such that for all i > n, s; selects the
null objeet.

Informally, the correspondence between the predicate is-c-program and the context-
free syntax of ASPLE can be seen by comparing production [BO1] of Table 1.1:

[BO11 {program> : := begin <{del traind ;
{stm train> end
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[C01] 1s-c-program Too= (<s1 1s-begin>, <S,- 1s-c-dcl-train>, R N

<$,* Is-c-stm-train>, <s.: 15-end>)
f€02] 1s-c-dcl~train = (<s-del 1s-,>, <s,” 1s-c-declaration>, . )
[C03] 1s-c-stm-train = (<s-del: 1s-,>, <s, 1s-c-statement>, .. )
[C04] 1s-c-declaration = (<sl' 1s-c-mode>, €5," 1s~c-1d11st>)
[C05] 1s-c-statement = 1s-c-asgt-stm v 1s-c-cond-stm v 1s-c-loop-stm v 1S-c-input-stm

v 1s-c-output-stnm
{c06] 1s-c-mode = (<s1 15-Q v (<s1 1s-ref>, . )>, <s, 18-bool V 1S~1nt>)
[C07] 1s-c-1dlist = (<s-del 1s-,>, <s, 1s-c-1d>, )
[€C08] 1s-c-asgt-stm = (<s1 1s-¢c-1d>, <s, 1s-1z>, <54 15-c-exp>)
[€C09] 1s-c-cond-stm = (<s1 1s-1f>,  <S,° 1s-C-exp>, <S,. 1S-then>, <S5, 1s-c-stm-train>,
<S¢ 1s-Q v 1s-c-else-part>, <Sg 15-f1>)
[C10] 1s-c-loop-stm = (<sl' 1s-while>, <S, 1s-c-exp>, <S, 1s-do>, <5, 1s-c-stm-train>,
<S5 1s-end>)

[C11] 1s-c-input-stm = (<s1 1s-input>.  <s, 1s-c-1d>)
[C12] 1s-c-output-stm = (<51~ Vs-output>, <s, 15-c-exp>)
[C13] 1s-c-else-part = (<s1 15-else>, s, 1s-c-stm-train>)
[C14] 1s-c-exp = 1s-c-factor v (<s1 18-C-exXp>, <5, 1s-1>, <sg 1s-c-factor>)
[C15] 1s-c¢c-factor = 1s-Cc-primary Vv (<s1 1s-c-factor>, <s, 15-*>, <S4 15-Cc-primary>)
[C16] 1s-c-primary = 1s-c-1d v 1s-c-bool-const v 1s-c-int-const v 1s-c-parenthesized-exp
[C17] 1s-c-parenthesized-exp= (<s1 1s-(>, <5, 1s-C-exp v 1s-c-compare>, <sg, 15-)>)
[C¢i8] 1s-c-compare = (<sl' Ts-c-exp>, <S,t 1§-2 Vv 1s-£>,  <s, 1$-c-exp>)
[C19] 1s-c-bool-const = Vs«true vV 1S-false
[C20] 1s-c-int-const = (<s1 1s-¢c-digit>, ... )}
[€C21] 1s-c-1d = (<s; s-c-letters, )
[C22] 1s-c-digit = 1s-0 v 1s-1 Vv , v o15-9
fc23] 1s-c-letter = 1$-A V 15-B V ... VvV 1§~2

TABLE 4.2. DEFINITION OF PREDICATE IS-C-PROGRAM

with definition [C01] of Table 4.2:

[co1] is-c-program = (<sp : is-begind, <82 : is-c-decl-traind, <s3 : is-;>,
{84 : is-cestm-traind, <{s5 : is-end>)

Definition [CO1] specifies that an object satisfying is-c-program has five immediate com-
ponents with names s;, + -+ , s5. Three of these components, those selected by s, , s; , and
85 , are elementary objects satisfying the predicates is-begin, is-;, and is-end, respectively.
These elementary objects correspond to the begin, ; , and end shown in [BO1]. The other
two components are composite objects corresponding to the <del train> and <stm train>
of Table 1.1.

The component selected by s., is an object satisfying is-c-dcl-train, defined in rule
[CO02]:

[co2] is~c-del-train = ({s-del: is-?, <s1 : is~c-declarationd, .. .)

This predicate definition shows the VDL convention for representing a sequence of items
separated by a delimiter. The special selector s-del selects an elementary object repre-
senting the delimiter, and s; , s, - - - select the successive items of the sequence. Thus an
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object satisfying is-c-del-train represents a sequence of declarations separated by semi-
colons. The declarations are represented by objects satisfying is-c-declaration. For
example, a declare train consisting of three declarations could be represented by the tree
shown in Figure 6. Each of the objects d, , d:, and d; satisfies the predicate is-c-declara-
tion.

s-del S1 S, 3

d d; d

Figure 6. Tree representation of declaration train.

The objects that satisfy is-c-declaration have two components defined by the predi-
cates is-c-mode and is-e-idlist. The first of these predicates is defined in rule {C04):

{Cos) is-c-mode = ($sy :is-Q\ (s :is-ref>,...)>, <83 : is-bool \/ is-indd)

An object that satisfies is-c-mode has two components. The first is either @, the null ob-
ject, or is a list of elementary objects defined by is-re¢f. The second component is an ele-
mentary object that satisfies either is-bool or is-int. A tree representation of the object that
corresponds to the mode declaration:

ref ref ref int

is shown in Figure 7.

int

ref ref ref

Figure 7. Object satisfying is-c-mode

The remainder of Table 4.2 completes the definition of the predicate is-c-program.
The algorithm that converts the character-string representation of an ASPLE program
into the corresponding VDL object is not specified in this definition. Because of the one-
to-one correspondence between syntactically correct ASPLE programs and objects satis-
fying is-c-program, Table 4.2 defines the context-free syntax of ASPLE.

The ASPLE program executed by the ASPLE Machine is obtained from concrete pro-
grams by removing the syntactic devices that were associated with their charaeter-string
representations. These abstracted programs are the essence of the corresponding ASPLE
programs. Abstracted programs are objects that satisfy the predicate is-abs-program
defined in Table 4.3. The definition of the elementary objects has been left somewhat in-
formal, indicated by the use of italic type. Some of these predicates and elementary objects
are used in the Machine-state.
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The degree of abstraction between concrete and abstracted programs is, to a certain ex-
tent, a matter of the definer’s choice. In this definition, the aim has been to define an ab-
straction that leaves only those parts of an ASPLE program that are essential for execution.

Abstracted ASPLE programs are simpler than the corresponding conerete programs.
There are no declarations and the only explicit type information is contained in the
abstraction of the input statement. The type information is needed there to check that the
types of the input value and target value match. There is, however, some implicit type
information contained in the representation of operators. For example, either plus orox,
depending on the type of the operands, are used to represent the + operator of the original
program. This is a similar situation to that which exists in compiled machine code for real
computers where there is implicit type information contained in the choice of the operation
codes.

fA01] s-abs-program = 3js-abs-statement-list

[A02] 1s-abs-statement = 1s-abs-assignment v 1s-abs-conditional v i1s-abs-loop v 1s-abs-i1nput
v 1s-abs-output

[A03] is-abs-assignment = (<target 1s-abs-identifier>, <source* 1s-abs-expr>)

[A04] 1s-abs-conditional = (<condition: i1s-abs-expr>, <true-part 1is-abs-statement-list>.

<false-part 1s-abs-statement-list>)

[the false part may be an empty list]

[A05] 1s-abs-loop = (<condition: 31s-abs-expr>, <body 1s-abs-statement-1ist>)
[A06] is-abs-input = (<target 1s-abs-loc>, <mode- 1$-abs-mode>)
{the mode part grves the mode of the target so that the
mode of the input value can be checked]
{A07] 1s-abs-output = {<source 1is-abs-expr>)
[A08] 1s-abs-loc = (<name: 1s-abs-identifier>, <deref: 1s-abs-integer>)

La location 18 an rdentifier to which the deref operation
18 to be applied a specified number of times]

[A09] 1s-abs-expr = is-abs-value v 1s-abs-infix-op v 1s-abs-loc
{A10] 1s-abs-value = 1s-abs-const v is-abs-identifier
[A11] 1s-abs-const = 1s-abs-boolean v 15-abs-integer
[A12] 1s-abs-infix-op = (<operand-1- 1s-abs-expr>, <operand-2 1s-abs-expr>,
<action 1s-abs-operator>)
[A13] 1s-abs-mode = [a set of two elementary objects represented by {int, boot}}
[A14] 1s-abs-identifier = [an infinite set of distingurshable elementary objects)
[A15] 1s-abs-integer = fan infinite set of elementary objects denoting the integer values.

The subset that denotes the integer values less than 10 28
represented by {0, 1,..., 9}]

[A16] 1s-abs-boolean = [a set of two elementary objecte denoting truth values and
represented by {Zrue, gakse}])

[A17] 1s-abs-operator = [z set of elementary objects represented by {glub, muft, ox, and,
equal, notequat})

[The sets of elementary obgects satisfying the predicates is-abs-identifier, is-abs-integer,
ts-abs-boolean, is-abs-mode, and 1s-abs-operator are mutually exelusive.)

TABLE 4.3. DEFINITION OF THE PREDICATE IS-ABS-PROGRAM
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VDL Translator

The construction of an abstracted program from its corresponding concrete program is
defined by an algorithm, the Translator. This algorithm checks that the concrete program
satisfies the context-sensitive requirements of ASPLE and, if so, constructs the correspond-
ing abstracted program. The Translator is defined by the set of functions, many of them
recursive, specified in Table 4.4. To explain the notation of this table, we describe the work-
ing of some of these functions.

Generally, the functions consist of conditional expressions of the form

pr— e, p:2—>e€y, -, Py—>E,

where p. is a predicate expression and e, is an expression defining an action to be taken.
The value of this conditional is the value of the first evaluated expression e, for which p.
is true. In this definition, the conditional expressions are all written so that at least one
predicate is true.

The top-level function translate is defined in [T01]:

[To1} translate(t) =
program-length(t) < n; — trans-program(t)
true — error [program too long]

This function has a single parameter, t, corresponding to an object satisfying the predicate
is-c-program. The function is evaluated in the process of initializing the Machine-state
with PROG, the VDL representation of the source program.

The function translate checks that the length of the program, calculated by pregram-
length, is less than the implementation defined limit, r; . If this condition is satisfied,
the abstracted program obtained by evaluating trans-program(t) is returned as the value
of translate. This abstracted program will be attached as part of the initial Machine-state
& by the selector program (see Table 4.1). If the length of the program is too great, the
Translator terminates in an error. This is typieal of the checks that the Translator makes.
If the program being translated fails a test, the process is stopped and the program is left
undefined.

The funetion trans-program [T02]:

[ro2] trans-program(t) =
number-of-identifiers(sz2(t)) < nz  [n: is an implementation defined maximum]
— trans-stm-train(ss(t))
true — error {too many variables declared]
[where: is-c-dcl-train(s2(t)) and is-c-stm-train(ss(t))]

first checks that the number of variables declared is less than the implementation defined
maximum, n, . The number of variables declared is obtained by evaluating number-of-
identifiers with the argument s,(t). This function also checks that no identifier is declared
more than once. The parameter t of trans-program is PROG that was passed on by trans-
late. Applying the selector s, using rule [CO1] selects the object representing the declare
train. While counting the number of variables declared, number-of-identifiers also
checks that no identifier is declared more than once. If there are not too many declared
identifiers, trans-stm-train is evaluated with the s,(t), which is the statement train.
The translation of the statement train is specified in statement [T03]:

[ro3]
trans-stm-train(t) =
slength(t) = 0 — <> [¢f the statement train conlains no statement, return an empty list; this can arise
when translating the else part of a conditional)
true — uo ({<elem(i): trans-stmt(s;(t)) > || 1 < i < slength(t)})
[where: is-c-statement(s;(t)), 1 < i < slength(t))]
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[TO1] translate(t)=
program-length{t) < n, - trans-program(t)
true — error [program too long]

{T102] trans-program{t)=
number-of-1dentifrers(s, (t)) < n, [n, 16 an wmplementation defined mazvmun]

- trans-stm-train(s (t))

true — error [too many variables declared)

[where 1s-c-dc1-tra1n(s2(t)) and 1s-c-stm—tra1n(su(t))]

[T03] trans-stm-train(t)=

slength(t) = 0 — <> [+f the statement train contains no statement, return an
empty list, this can arise when translating the else
part of a condrtionall

true = uy{l<elem(1) trans-stmt(s (t))> || 1 < 1 < slength(t)})

[where 1s-c-statement(s1(t)), 1 <1 ¢ stength(t))]

[T04] trans-stmt(t)=
1s-c-asgt-stm(t) — trans-asgt-stm(t)
1s-c-cond-stm(t) ~ trans-cond-stm(t)
1s-c-loop-stm(t) — trans-Toop-stm(t)
1s-c~input-stm(t) — trans-thput-stm(t)
1s-c-output-stm{t) — trans-output-stm(t)

[T05] trans-asgt-stm(t)=
valid-mode-for-assignment{t) — translate-assignment(t)
true — error [modes not compatible for assignment]

[T06] translate-assignment(t)= (if the reference chain length of the target is 1 then
the righthand side 15 treated as an expression, other-
wise the right side 18 a reference and the appropriate
amount of de-referencing must be caleulated]

ref-chaxn-length(si(t)) =1 - u0(<target: make-id(sl(t))>,

<source: trans-exp(sa(t))>)
true — u0(<target' make-1d(s,(t))>,

<source: trans-ref(sa(t),

ref-chain-length(s, (t))-1>)
(where 1s-c-1d(s,{t))and 15-c-exp(s,(t))]

{707} trans-cond-stm(t)=
pr1mit1ve-mode(52(t)) = boot —
uo(<cond1t1on‘ trans-expr(sz(t))>, <true-part’ trans-stmt-travn(su(t))>,
<false-part. trans-stmt-tra1n(szoss(t))>)

true — error [mode of conditional expression not
boolean

[where. 1s-c-exp(s,(t)), 15-c-stm-train(s, (t)), and is-c-stm-train(s,es (t))]

[T08]) trans-loop-stm{t)=
pr1m1t1ve-mode(sz(t)) = bool — yp{<condition trans-expr(szit))>,
<body- trans-stm-train(s,(t))>)

true —~ error [mode of_ conditional expression not
boolean

{where 1s-c-exp(s,(t}), and 1s-c-stm-train(s (t))]

[T09] trans-input-stm(t)=
nol<target. trans-ref(sz(t), 1)>, <mode* pr1m1t1ve-mode(52(t))>)

[where 15-c-1d(52(t))]
TABLE 4.4. ASPLE TRANSLATOR
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[T1u) trans-output-stm(t)=
valid-exp(t) — ug(<source. trans-exp(s,(t))>)

true ~ error [invalid expression]

[where 1s-c-exp(s,(t))]

[T11] trans-exp(t)=

make-bool-const(t)

make-1nt-const{t}

trans-ref(t,0) [dereference sufficiently to get value]
trans-exp(s,(t)) [t is a parenthesized expression)

15-c-bool-const{t)
1s-c-1nt-const(t)
1s-¢c-1d(t)
15-c-parenthesized-exp

bbb

uol<operand-1 trans-exp(s,(t)}>, <operand-2: trans-exp(
<action- make-operator(;)>)

[+f t 18 not a constant, identifier, or parenthesiaed
expression then t consists of two operands and an operator)

true

[T12] trans-ref(t,n)= [construct a reference to a variable such that the length of the
reference chain of the value 18 n

ug(<name: make-1d(t)>, <deref: ref-chain-length{t)-n>

[T13] make-1d(t)=

slength(t) < n [implementation defined maximum]

l‘—->[art elementary object satisfying re-identifrer such that
(Vt1't2) (1s-c-1d(t1) & is-c-1d(t2) & (make~1d(t1) =
make-ld(tz) >t t2) ) that s, there 1s a one-to-one mapping
hetween t and the result of this operation]

true —error [identifier longer than implementation defined length]

[T14] make-bool-const(t)=
1s-trye(t) —  true
1s-false(t) —~  false [there can be no other possibilrty]

[T15] make-1nt-const(t)=

value-of-int-const(t) < n. — value-of-int-const(t)

5

true — error [integer constant too big for
implementation
[T16] value-of-int-constant(t)=
1s-0(t) -~ 0
15-1(t)  —~ 1
1s-g(t) ~ 9
slength(t)

slength(t) < n, — i-_‘vzﬂue-of-mt-const(51(':)) ®10 + (slength(t)-i)
true d [too many digits in wnteger constant]

[where 1s-c-d1git(s {t)), 1 < 1 < slength(t))
[T17] make-operator(t)=
pr1m1t1ve-mode(sl(t)) = bool & 15-1(52(t))

Pr1m1t1ve-mode(s1(t)) = bool & 15-1(52(t)) and
Dr1m1t1ve-mode(sl(t)) =t & 15-1(52(t)) plus

.
s

-~
pr1m1t1ve-mode(sl(t)) wnt & 15-1(52(t)) —  mult
pr1m1t1ve-mode(sl(t)) =4t & 1s-i(sz(t)) —
Primitive-mode(s,(t)) = et & 15-£(s,(t)) —

[where Ts-c-exp(s, (t))]

TABLE 4.4—Continued
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s (t))>,
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[T18]

[T191

[T20]

[T21]

[122]

[T123]

(124}

[T125)

[T26]

[T27]
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primitive-mode{t)=  [check validity of expression and obtain tts primitive mode]
Is-c-1d{t) — primitive-mode-of-1d(t)
1s-c-bool-const —  bood
1s~c-1nt-const = ant
1s-c-parenthesized-expression{t) — pr1m1t1ve-mode(52(t))
valid-compare(t) ~  bool
valid-exp(t) — pr\m1t1ve-mode(sl(t))
[primitive mode of valid expression s
primitive mode of either operand]
true —  error [invalid expression]
ref-chain-length(t)=
1s-c-1d(t) — slength(siamode-of-1d(t))+1
[thie is an elementary object satisfying is-integer])
true -~ 1
{where s]-mode-of-1d(t) 18 the list of ref'’s wn the declaration of the
rdentiyier t]
primitive-mode-of-1d(t)=
15-bool (s, (mode-of-1d(t))) boot
1s-2nt(s,(mode-of-1d(t))) —~ ant
mode-of-1d(t)= [find declaration that contains identifier equal to t and select

mode part of declaration]
(3x,) (x 5,(PROG)=t) = s e({1x,) (vs-c-declaration(x,(PROG)) &
1°%2
(31) (s e5,0x,(PROG)=t))) (PROG)

true - error [Ldentlfier was not declared]

[where 1s-c-dc1-tra1n(62(PR0G))]

program-length(t)=
Jis-slist(t) —

L
slength(t) .
true - X program-Tength(s, (t))
1=1
number-of-identifiers(t)=
clength(t)

valid-declare-train{t) - 2 slength(SQoSI(t))
1=1

true -~ error [duplicate declarations in declare train]
[where 1s-c-1dl1st(52-51(t)), 1 < i < slength(t)]

valid-declare-tr-in(t)=
T(3x1.x2) (x1#x2 & 1s-c-1d(x1{t)) & 1s-c-1d{xo(t)) & x;(t) = xo(t))

[this 18 only true of the declare train t 1f there do not exist two different
selectors that select equal i1dentifiers, 1.e., 1f there are no duplicate
deelarations]

valid-mode-for-assignment(t)=
(pr1m1t1ve-mode(sl(t)) = pr1m1tlye-mode(sa(t)) &
(ref-chaln-]ength(sl(t))-l < ref-cha1n-1ength(53(t)))

[true +f the mode of the right sitde of an assignment statement 1s valid for
assignment to the left side]

[where 1s-c-1d(51(t)) and 1s-c-exp(53(t))]

valid-compare(t)=
1s-c-compare{t) & (pr1m1t1ve-mode(51(t)) = ant) & (pr1m1t1ve-mode(sa(t)) = ant)
[where 1s-c-exp(sl(t)) & 1s-c—exp(sa(t))]

valid-exp(t)=
115-3(52(t)) & ]15-{(52(t)) & (pr1m1t1ve-mode(sl(t)) = pr1m1t1ve-mode(sa(t)))
[where 1s-c-exp(s,(t)) & 1s-c-exp(s,(t))]

TABLE 4.4.—Continued
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In this function, if the parameter is the null object, then an empty list is returned. This could
happen while translating the conditional statement if the else-part is empty. Otherwise,
trans-stm-train returns a list constructed by applying the uo operation to the result of
evaluating trans-stmt for each statement of the train.

The Translator often uses predicate functions for making context-sensitive checks. For
example, the predicate valid-mode-for-assignment, defined in statement [T25]:

IT25]1
valid-mode-for-assignment(t) =
(primitive-mode(s;(t)) = primitive-mode(s3(t)) &
(ref-chain-length(s;(t)) — 1 < ref-chain-length(s3(t)))
[true if the mode of the right side of an assignment statement is valid for assignment to the left side]
[where: is-c-id (81(t)) and is-c-exp(s3(t))]

is true if the modes of the expression and the target of the assighment statement t are
compatible. This predicate specifies the rule needed for legal modes in assignment; that is,
the primitive modes of both sides must be identical, and the number of levels of indirection
of the source and target must be compatible. The functions primitive-meode and ref-
chain-length are defined in statements [T18] and [T19], respectively.

The function mode-of-id [T21]:

[r21]
mode-of-id(t) = [find declaration that contains identifier equal to t and select mode part of declaration]
Ex1) (x1-82(PROG) = t) — s1- ({tx2) (is-c-declaration (x.(PROG)) &
(i) (si-s2-x2(PROG) = t)))(PROG)
true - exrror [identifier was not declared]
[where: is-c-del-train(s2(PROG)))

checks that there exists a declaration for the identifier t and, if so, selects the mode part
of the declaration of t. The existence of the declaration is verified by the predicate

(Fx) (i 8:(PROG) = 1)

which is true if and only if there exists a composite selector x, which, when applied to
s:(PROG), yields the identifier t. The object s:(PROG) is the declare train from the con-
crete program; see rule [CO1]. If the selector x, exists, then there must be an occurrence of
the identifier t in the declare train, and t must have been declared. If x, does not exist,
then t has not been declared and the program is in error.

If there is a declaration of t, then the value of mode-of-id(t) is

s1-((ux2) (is-c-declaration(x:(PROG)) &
i) (s1-82- x:PROG) = 1))) PROG)

The iota function, ., applied here yields the composite selector x» , which satisfies two con-
ditions. The object x,(PROG) must be a declaration and there must exist an ¢ such that
s,-s2- x.(PROG) is equal to t. If x,(PROG) is a declaration, then s;-x,(PROG) is the
list of identifiers being declared; see rule [CO4]. Applying s, to this list of identifiers yields
an identifier. This condition requires that x, select the declaration that contains t in the
identifier list. We know that x, must be unique; otherwise, the function declare train [T23]
would have detected an error. The iota function thus yields the unique composite selector
x: such that x,(PROG) is the declaration of t. Applying the selector s; to this declaration
yields the mode of t.

The translation process thus consists of executing a sequence of operations that pass
back a value to the caller. The final result, provided all the validity checks are passed, is
the translated program. This is attached as a component of the initial Machine-state.

Computing Surveys, Vol. 8, No. 2, June 1976



246 .

[101]

f102]

1031

[104]

[105]

[106]

[1071

[108]

[109]

[110]
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interpret-program = 1nterpret-statement-Tist{program(g))

interpret-statement-Tist(t) =

1s-<> (t) ~— @  [+f t is empty list, do nothing)
true ~> nterpret-statement-list(tail(t)); [defines interpretation sequence
interpret-statement(head(t)) of statements in program

interpret-statement(t)=

interpret-assignment(t)
interpret-conditional(t)
interpret-loop(t)
interpret-input(t)
interpret-output(t)

1s-abs-assignment(t)
1s-abs-conditional(t)
1s-abs-loop(t)
1s-abs-1nput(t)
1s-abs-output(t)

Ll

interpret-assignment(t)=

assign(target(t), value), [evaluate the right side then pass value to assign
operation

value eval-exp {source(t))
[where 1s-abs-1dentifier(target(t)) and 1s-abs-exp{source(t))]

Interpret-conditional(t)=
eval-exp(condition(t)) = true — lnterpret—statement-l1st(true-part(t))

true — {nterpret-statement-list(false-part(t))

[where ts-abs-statement-list{true-part{t)), 1s-abs-statement-list(false-part(t)),
and 1s-abs- expr{condition(t))]

interpret-loop(t)=
eval-exp(condition(t)) = true — aInterpret-loop(t),
interpret-statement-Jist{body(t))
true — Q
[where 1s-abs-expr{condition(t)) and 15-abs-statement-11st(body(t))

interpret-input{t)=
assign{destination, va]ue),‘
destination eval-ref(nameetarget(t), derefetarget(t));
value read(mode(t))

[where 1s-abs-loc{target(t)), 1s-abs-mode(mode(t))]

interpret-output(t)=
write(value),
value eval-exp(source(t))

eval-exp(t)=
1s-abs-loc(t) — eval-ref(vame(t), deref{t))
1s-abs-infix-op(t) — overate(valuel, value2, action(t));
valuel* eval-exp(operand-1(t)),
value2* eval-exp(operand-2(t))
1s-abs-value(t) - PASS t

operate(vl, v2, op)=

op = plus — add(v), v2)
op = mult — multiply(vl, v2)
op = on —~ logical-or(vl, v2)
op = and — logical-and(vt, v2)
op = equal — compare-equal{vl, v2)
op = notequal —> compare-notequal{vl, v2)
TABLE 4.5. DeriniTioN oF THE ASPLE INTERPRETER
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[nez]

[113]

{114]

[115]

[116]

[Nz}

{nsj

[119]

f120]

[121]

f122]
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add(a,b)=

ath < ns[an wmplementation-defined maximum] — PASS a + b

true — PASS. implementation-defined resuit
multiply{a,b)=

a b < ns[an wmplementation-defined maximum] — PASS a b

true — PASS: 1mplementation-defined result

logical-or(a,b)=

a = taue — PASS- taue

true — PASS b [+f a 1s false, the value is the value of b]
Toaircal-and(a,b)

a = false — PASS false

true — PASS b [+f a 18 true, the value ts the value of b]
compare-equal{a,b)=

a=b —~  PASS true

atb — PASS. false
compare-not-equal(a,b)=

a=b - PASS false

a ¥b - PASS  true
assign{target, value)= [perform the actual assignment of a value to storagel

= u(store(g): <target value>)

eval-ref(1d, n)=

n=20 — PASS- 1d
true — eval-ref(ref, n-1),
ref dereference(1d)
dereference(1d)=
Ais-2(1destore(g)) — PASS. 1destore(t) [obtain value of variable i1d from store]
true — error [reference to value that has not been set]
write(v)=

length{output({g)) < "6 [an implementation-defined mazimum]
—~ (& <output output(t) v>) {concatenate value v
on end of output filel

true — error [number of 1tems on output file _greater than

implementation defined maximum)

read(t)= [read and check value from input file

1s-<>(1nput(g)) — error [end of filel
mode-of-const(head(input(g))=t —  wlg:<anput. tari(anput(s))>)

PASS: head{nput(g))
true — error [mode of input incompatible]

mode-of-const{v)= [obtain mode of value in the wnput filel
1s-abs-boolean(v) — PASS. boot
1s-abs-i1nteger(v) — PASS- ant

TABLE 4.5.—Continued
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For example, the tree representation of £ , corresponding to the ASPLE program:
begin
it A;
input A;
A:=A+5;
output A
end

and an input file containing the value 7 is shown in Figure 8.

program contro] store  1nput output
1nterpret program 0 <>
elem(1) elem(2) elem(3) elem(1)

3 ,

source

name deref deref

« \.

tﬂFQEt source

operand-1 act1on

operand -2
JM

deref
A 1

Figure 8. Initial machine-state.

VDL Interpreter

In the previous subsections we described the construction of the abstracted program and
its attachment as part of the initial Machine-state of the abstract machine. The control
part of £ contains the operation interpret-program. Execution of this operation begins
the interpretation of the abstracted program. Interpretation will continue until the control
part becomes empty or until an error is detected.

The control part of ¢ is a composite object with operations at the nodes. Since ASPLE
is a language without side effects, we can simplify this and treat the control part informaily
as a stack of machine operations, some with arguments. The operation most recently added
to the stack is the next one to be executed. When execution is complete, the operation is
removed from the stack. The execution of an operation causes one of the following:

@ the addition of new operations to the instruction stack;

® the insertion of a value into the argument list of an operation already on the stack,

possibly accompanied by a change to some other components of £.

The machine operations of the ASPLE Machine are defined in Table 4.5. The interpret-
program operation is defined in statement [101):

[{[\]}] interpret-program = interpret-statement-list(programf(t))
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Its effeet is to cause interpret-statement-list to be put on the operation stack with the
abstracted program from £ as argument. The abstracted program, defined in Table 4.3,
consists of a statement list.

The operation interpret-statement-list is defined in [102]:

o2} interpret-statement-list(t) =
is={>(t) — Q [if t is empty list, do nothing]
true — interpret-statement-list(tail(t));
interpret-statement(head(t))
[defines interpretation sequence of statements in program}

and uses the same type of conditional expression as is used in the Translator. Here the ex-
pression to the right of the arrow specifies the operation that is to be added to the stack.
If the statement list t is empty, then nothing, signified by €, is added to the operation
stack. This is the way that the control part of £ will become empty at the end of the in-
terpretation. If the statement list t is not empty, the pair of operations:

interpret-statement-list (tail (t));
interpret-statement (head (t))

replaces the current operation on the stack in the order shown. The semicolon after in-
terpret-statement-list separates the two operations. The interpret-statement opera-
tion is thus executed next. The argument of this operation is the first statement from the
statement-list t, making this statement the next ASPLE statement to be interpreted. When
this is completed, interpret-statement-list will become the next operation in the stack
to be executed. Its argument is the statement list t with its first element deleted. This
mechanism defines the sequence of execution of the statements of the ASPLE program.

As an example of the way statements are interpreted, consider interpret-assignment,
defined in [I04]:

l104] interpret-assignment(t) =
assign (target(t), value); [evaluate the right side then pass value to assign operation)
value: eval-exp (source(t))
[where: is-abs-identifier (target(t)) and is-abs-exp(source(t))]

Execution of interpret-assignment causes it to be replaced on the stack by:

assign (target (t), value);
value: eval-exp (source (t))

The term ““value-’’ denotes that the execution of eval-exp will return a value, which will
be known locally as value. This value will be substituted into the argument list of an, as
yet, unexecuted instruction on the operation stack. The value replaces the argument de-
noted by value in assign. In this way, the value computed by eval-exp is passed to as-
sign for assighment to storage.

The definition of eval-exp:

[i09] eval-exp(t) =
is-abs-loc(t) — eval-ref(name(t), deref(t))
is-abs-infix-op(t) — operate(valuel, value2, action(t));
valuel: eval-exp(operand-1(t));
value2: eval-exp(operand-2(t))
is-abs-value(t) — PASS:t
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shows how the return of a value is expressed. This operation has a three-way conditional,
and the action depends on the kind of expression passed to the operation as an argument.
If the expression t is a reference, that is, if is-abs-loc(t) is true, then a single new opera-
tion, eval-ref, is put on the stack. If the expression is an infix operation, then three new
operations are added to the stack. However, if it is a value, that is, if it corresponds to a
constant in the original program, the actual value of the constant is returned. This is signi-
fied by PASS:, followed by the value to be returned.

Value-returning operations can also make changes to other parts of ¢ through the use of
the p operator. For example, read, defined in statement [121]:

n211 read(t) = {read and check value from input file]

is-{>(input(g)) — error fend of file]

mode-of-const(head(input(¢)) =t — u(E : <input: tail(input())>)

PASS: head (input(t))
true — error
[mode of input incompatible]

first checks that the end of file has not been reached. If it has, this is an error and interpre-
tation stops at this point. The next check is that the mode of the value to be read is the
same as that of the variable to which it is to be assigned. This latter mode was determined
by the Translator and inserted into the abstracted program. If the modes are compatible,
two things take place simultaneously: the u operator replaces the input component of £
by its tail, and the head of the input component £ is returned with the PASS: mechanism.

Discussion

The VDL definition of ASPLE specifically indicates the points at which errors can be de-
tected in programs that are in accordance with the context-free syntax. These points are
marked explicitly in the Translator and Interpreter algorithms. For example, if the modes
of two operands in an expression are not compatible, then an error will be detected by
primitive-mode [T18]. If a reference is made to a variable that has not been assigned a
value, the error will be detected by dereference [119].

By making a distinction between the Translator and the Interpreter, this VDL definition
shows the difference between the static and dynamic aspects of ASPLE. While some errors
can be detected statically, others seem to require interpretation. The dividing line between
the two is a matter of judgment by the writer of the definition. Here, we have left to the
Interpreter the detection of any error that required the manipulation of some data. In the
VDL technique of definition, errors will only be detected by the Interpreter if the part of
the program containing the error is actually executed.

This technique of language definition continues to be developed. Later work aimed at
proving the correctness of implementations has shown 2 need to make the definitions even
more abstract. These developments are described by Békic et al. [B0].

5. ATTRIBUTE GRAMMARS

We now discuss the definition technique of attribute grammars originally due to Knuth
(K1]. Attribute grammars and related concepts have been described in different places
[B1, B2, K1, K2, L5]. The notation used here is closely related to that used in [B1, B2, L5].

Overview

A context-free grammar of a language defines a derivation tree for each syntactically cor-
rect program of the language. An attribute grammar is based on a context-free grammar
and associates attributes with the nodes of a derivation tree. Attribute evaluation rules are
associated with the context-free productions of an attribute. The evaluation rule associated
with a given production is applied for all instances of this production in the derivation tree.
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Attributes can be of two kinds: the inherited attributes, whose values are obtained from
the immediate parent node and its production in the derivation tree, and the synthesized
attributes, whose values are obtained from the immediate descendants in the tree and
the productions generating these. The inherited attributes of the left side of a production
and the synthesized attributes of the right side represent values obtained from the surround-
ing nodes in the derivation tree. The evaluation rules of a production specify the computa-
tion of the other attributes, that is, the inherited attributes of the right side and the syn-
thesized attributes of the left. The values of these attributes are passed to the surrounding
nodes. More generally, one can say that the synthesized attributes of a node represent in-
formation which is synthesized in the subtree of the node and passed up toward the root
node of the derivation tree, whereas the inherited attributes represent information which is
passed down, from the root nodes towards the leaves. Inherited attributes indicate the
context in which the node and its subtree are found.

The context-sensitive constraints of a language are expressed by conditions included in
its attribute grammar. These conditions specify relations between the attribute values that
must be satisfied in the derivation tree of a valid program.

Different methods can be used for specifying the attribute evaluation rules. The concept
of attribute grammars is not a complete method for making formal definitions of program-
ming languages. For general use, it must be combined with a method for the specification of
its evaluation rules. In the attribute grammar for ASPLE, we use action symbols [L5] to
specify evaluation rules other than simple value transfers.

Several approaches can be used with attribute grammars for the specification of the
semantics of a program. Knuth [K1] proposed that the “meaning’ of a program be given
by the value of a special attribute at the root node of the derivation tree. For the specifi-
cation of the ASPLE semantics, we have chosen a different approach, which corresponds
to the practice of implementing programs in two phases: translation into a lower level target
language, followed by the execution of the translated program. Therefore we distinguish
two kinds of action symbols: 1) those symbols that are executed during a translation phase
and that evaluate attribute values in the derivation tree, and 2) those that are executed
later during an execution phase {B2]. The meaning of a program is specified by the sequence
of action symbols and certain attribute values obtained during the translation of the source
text of the program. Rather than choosing a rigidly defined set of actions for the execution
phase (for example, a particular machine language) we have, as is customary, left the
meaning of the action symbols informally defined.

Attribute Grammar for ASPLE

An attribute grammar for ASPLE is shown in Table 5.1. The production for the starting
symbol <program> is shown in [AGO1].

{AGO1]
{program> | memory ::= begin
{decl train> | empity-env |zero-ids | empty-memony
1 env { num-ids { memory

2

{stm train)> | env

end

condition: num-ids < n:
[number of declared identifiers must be less than the implemeniation
defined number]

condition: prog-length < n,
[prog-length 1s an implementation defined altribute whose evaluation rules
must be added to the grammar]
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[AGO1] <program> tmemory = begin
<dcl tratn> tempty-env tzeno-4ds venply-memony
tenv  tnum-1ds 4memory
N
<stm train> +‘env
end
condition num=-i1ds < n
[number of declared identifiers must be less than
the implementation defined number]
condttion prog~length < n
[prog-length 18 an implementation defined attribute
whose evaluation rules must be added to the grammar]

[AG023] <dcl train> +env +num-ids bmemory1 fenv2 +num-1ds  tmemory
1 1 2 2

= <deciaration> ‘env ¥num-i1ds #memoryl tenv
1 2

4num-1ds tmemory
2 2

| <dectaration> +‘env ¥num-1ds tmemory1 tenv
1
+num-lds3 fmemorya

’

<dcli train> venv +num-1ds Ymemory tenv
3 3 2

4num-1ds tmemory
2 2
[AGO3] <stm train> tenv . = <statement> ‘env

| <statement> +env

2

<stm train> +env

fAG043] <declaration> #env1 +num-1ds +memory +env 4num-ids +memory
1 1 2 2
= <mode > t+prim-mode trefs
<id-list> #env1 +num-1ds vprim-mode vrefs

+memory tenv tnum-1ds 4+memory
1 2 2 2

[AG05] <mode> 4prim-mode +refs
© = bool
give value to attribute +hopp tprim-mode

give value to attribute tone-ned H‘efs1

1 int
give value to attribute v4nt +tprim-mode

give value to attribute vcne-nef trefs
1

| ref
<mode> tprim-mode #trefs
add one ref trefs2 frefsl
CAGo6] <td-11s5t> +env ynum~1ds +prim-mode +refs ‘¢memory tenv taum-1ds tmemory
! = «<declared 1d> ‘env +prim-mode +Jrefs ‘memory 2
fenv1 tmemory !

add one 1d +num-|ds1 tnum=-1ds
f-AA-BRCALL VLA 2

| <declared td> +env +prim-mode +refs #memoryl
tenv tmemory
3 3
add one 1d +num=-1ds +num-|ds3
== - 1

<td-list> +¢env +num=1ds +prim-mode +refs +memory

tenv tnum-1ds tmemory
2 2 2
TABLE 5.1. ATTRIBUTE GRAMMAR OF ASPLE
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[AG07] <declared 1d> Jenvl +prim-mode trefs #memoryl +env2 fmemory2
1

= <i1d> 1name1

insert declaration +envl &name1 +prlm-mode1 +refsl fenv2
include variable +memory ¥name +tmemory

[the name is added to memory and its value initialised to

unde fined]
condition 1(3*)(f=(name2,pr|m-modez, refsz) &

t ¢ env & name =name )
[duplicate declarations are not allowed]

Caco8] <statement> +env = <asgt stm> ienv
| <cond stm> +env
| <joop stm> +env
I <input stm> venv

| <output stm> tenv

[AG09] <asgt stm> +env = <used 1d> +env 4prim-mode trefs +name

subtract one ref +‘refs trefs

<exp> +env {refs +pr|m-mode2 +VALUE
STORE +name +VALUE

condition prim-mode = prim-mode

[primitive modes must be compatible for assignment]

[AaGi0] <cond stm> +env = if

<exp> Yenv ‘zeno-nrefs tprim-mode +VALUE
BRANCH ON FALSE +VALUE Habell

then
<stm train> +‘Yenv

BRANCH +label

else z

LOCATE +label

<stm train> +‘env

v

LOCATE +41label

condition pr?m—mode = book
I ef

<exp> +env vzeno-negs +prim-mode AVALUE
BRANCH ON FALSE +VALUE +label

then
<stm train> +Yenv .
f
LOCATE +tlabel
condition prim-mode = book
faG11] <loop stm> +env = while

LOCATE +label

<exp> +env tztno-ne“ +prim-mode +VALUE
BRANCH ON FALSE +VALUE +label

do z

<stm train> +‘env

end

BRANCH +label

LOCATE Habel2

condittion prim-mode = bool

TABLE 5.1.—Continued
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fac12] <input stm> +denv = wnput
<used 1d> +env 4prim-mode trefs fnamel
<deref action> +name +refs ‘one-ref fNAME2
<itnput value> +4prim-mode +VALUE
STORE +NAME2 ¥VALUE

faG13] <input value> +prim-mode +VALUE
= READ INTEGRAL +VALUE
condition prim-mode = ant

| READ BOOLEAN +VALUE
conditton prim-mode = bool

{value winput must be compatible with target]

[AGI4] <output stm> +env = output
<exp> +env +Yzero-refs tprim-mode 4VALUE
<output action> +prim-mode +VALUE

[AaGI5] <output action> +prim-mode +VALUE
.= WRITE INTEGRAL +VALUE
condition, prim-mode = 4nt

| WRITE BOQLEAN +VALUE
condition prim-mode = bool

fAGI6] <exp> tenv +refs %prnm-model +VALUE
= «factor> +env +Jrefs +prim-mode %VALUEl

| <exp> denv ‘Vzero-nefs &prlm-mode‘ fVALUE2
s
<factor> +¢env +zero-refs +prim-mode 4+VALUE
<+ action> wprlm-mode1 *VALUE2 WALUE3 +VALUE1
condition prim-mode = prim-mode
(primitive modes must correspond
condition refs = zero-negs

[the mode of the factor is without any references]

CaGi7] <+ action> +prim-mode +VALUE +VALUE 4VALUE
= ﬁgﬁ #VALUE2 +VALUE +VALUE
condttion prim-mode =a4nt
1 OR #VALUEl +VALUE2 +VALUE

condition prim-mode = hoot

[AGI8] <factor> +env +refs fprlm—model &VALUE1

= <primary> ‘env +refs fprlm-model %VALUE1

| <factor> ‘env v Zeno-neds fprlm-mode1 QVALUE2
*

<primary> +env + zeno-aeﬂdfprlm-modez 1VALUE3
<* action> +¢prim-mode YVALUE *VALUE3 fVALUEl
condition prim-mode = prim-mode

[primitive modes must correspond
condition refs = zero-regs

[the mode of the factor ie without any references]

TABLE 5.1.—Continued
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[AGI9] <* action> +prim-mode #VALUE] OVALUE2 #VALUEJ

= MULTIPLY wVALUE1 +VALUEZ fVALUE3
condition* prim-mode = jut

I AND ¢VALUE +VALUE +VALUE
condition prim-mode = book

[AG20] <primary> +env +refsl +prim-mode +VALUE

= <used 1d> +tenv +tprim-mode +trefs 4name
<deref action> +¢name trefs trefs +VALUE

{some dereferencing may possibly be donel

| <constant> +4prim-mode +VALUE
condition refs1 = zenc-nefs
| (

Zexp> +env vzeno-nefs tprim-mode +VALUE
)

condition refs! = zero-nefs
| (

<compare> +env +VALUE
)

give vaiue to attribute +book tprim-mode

condition refs1 = zero-Aefs

CaG21] <used 1d> ‘env tprim-mode +trefs 4name

= <id> 4name

condition {name, prim-mode, refs) € env

[aG22] <deref action> +name &refs1 +refs2 fVALUEl

= give value to attribute +name TVALUEI
condition refs = refs

(no dereferencing 15 necessary]

1 LOAD +¥name 4VALUE
Lan undefined stored value gives rise to an error condition]
fone level of dereferencing 18 done]
subtract one ref +refs trefs

[refs w2ll always be greater than szero]

<deref action> tVALUE2 @refs3 irefsz fVALUEl

condition refs > refs
[several levels of dergferenczng can be done recursively
The number of times the recursion is invoked depends on
the difference of the values of refel and refszj

[AG23] <compare> +Yenv fVALUﬂ

= <exp> jenv  yzeno-refs ¢pr|m-model +VALUE
2

<exp> ‘tenv +zeno-refs tprim-mode #VALUE3
COMPARE EQUAL &VALUE2 !rVALUE3 +VALUE

e lONE EYCAL 1
condition prlm-mode1 = ant

condition prlm—modeZ = 4nt

| <exp> +Yenv +zero-refs 4prim-mode +VALUE
ﬁ 1 2
<exp> +env  {zero-refs tprim-mode TVALUE3
COMPARE NOT EQUAL #VALUE2 #VALUE3 +VALUE!
condttion pr:m-model = 4nt

condition prnm—mode2 = int

TABLE 5.1.—Continued
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[AG24] <constant> 4prim-mode +tvalue
* = <bool constant> +tvalue
give vaiue to attribute +boof +prim-mode

{ <int constant> +value

give value to attribute +4int +4prim-mode

[AG251 <bool constant> +4value -
= true
give value to attribute #true tvalue

| false
give value to attribute +fafse tvalue

[AG26] <int constant> +tvalue = <number> +num-digits 4tvalue
condition num-digits < g
Cnumber of digits wn an integer constant must be

less than the implementation defined maximum n3]

[AG27]  <number> fnum-dngnfsl tvalue

~=  <dig1t> tvalue

1
give value to attribute +‘one-deget +tnum-digits
1

{ <number> tnum-dtgits fvalue2
2

<digtt> +value

3
muitiply +valtue +10 1value“
2
add +value +value Tvaluel
— 3

add one digit +num-d|g|+s2 fnum-d:g:fsl

LAG28]  <digit> +tvalue = 0
give value to attribute ¢ +value

| 1
g've value to atfribute 41 +tvalue

| 8
gtve value to attribute 49 4tvalue

[AG29] <1d> +tname = <identifier> +tnum-letters +name
condition num=-letters < n
[number of letters tn an identifier must be less than

the implementation defined mazimum n“]

CAc30] <i1dentifier> #num-le‘H‘ersl 4name

= <letter> +tname
dive value to attribute +one-Leftfer +4num-letters
1

| <tdentifier> 4num-letters tname
2 2

<letter> +tname
concatenate +name ¥name tname

add one letter +num-letters fnum-leffersl
ocL ohe ‘erier 2

CaG31] <letter> +tname = A
give value to attribute +A 4name

| B
give value to attribute B tname

| 2z
give value to attribute +27 tname

TABLE 5.1.—Continued
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This production specifies the context-free rule [BO1}:
<{program) ::= begin <decl train> ; <stm traind> end

The terminal symbols are written in italic characters. In the attribute grammar, each sym-
bol of the right side of a production starts a new line. Attributes are represented by names
which are written on the same line, following the syntactic symbol to which they apply.
Synthesized attributes are prefixed by an arrow pointing upward; inherited ones by an
arrow pointing downward. The attributes of a given symbol are always written in the same
order.

The synthesized attribute T memory of the root node <program> represents the initial
state of the program variables, each one being initialized to the undefined value. The value
of this attribute is given by the sixth attribute of the<del train>. Since the latter is a syn-
thesized attribute of a symbol on the right side of the production, its value is obtained from
the lower productions in the derivation tree. In this case, the value is synthesized in the
subtree of the node <del train>. The transfer of the attribute value from the right-side
symbol <del train> to the left-side symbol <program> is indicated by the use of same name
T memory at both places. In general, attribute evaluation rules that are simple value
transfers are specified by the use of identical names.

The value of the attribute env represents the environment of the program and is a set of
triples associating identifiers, primitive modes, and reference chain lengths, The value of
env is synthesized in the subtree of the node <dcl train> and is transferred to the inherited
attribute of the node <stm train>.

The names empty-env, zero-ids, and empty-memory represent constant attribute values,
written in script characters. These are the values taken by the first three attributes of the
node <del train> and passed down to its subtree. Table 5.2 lists the set of possible values
for each attribute type, the names of constant values used in the attribute grammar, and
the action symbols associated with the attribute type.

There are two conditions imposed on the values of the attributes in [AGO1]. The value of
the attribute num-ids, which represents the number of declared identifiers in the program,
must be less than the implementation defined constant n, and the attribute prog-length,
which serves to represent the length of the program, must be less than the constant n;.
The attribute prog-length is not associated with any symbol, since its computation is
left for implementation definition.

The attribute evaluation rules of production [AGO1] can be summarized as follows: the
values of the attributes memory of <program> and env of <stm train> are defined by
simple value transfers, indicated by the use of identical names, and the first three attributes
of <del train> are defined to have constant values. The values of all other attributes are
determined by surrounding productions within the derivation tree, in this case by the pro-
duction for <del train>. In addition, certain conditions must be satisfied by the obtained
attribute values. A program that does not satisfy these conditions is invalid.

The production of <del train> is given in [AG02]:

[AGO2] {del train> | env; | num-ids; | memory; | env; T num-ids: { memory;
: := <{declaration> | env; | num-ids, | memory;, 1 env;
T num-ids; 1 memory,
| <declaration> | env; | num-ids; | memory,; | env;
1 num-ids; 1 memory;

3
{del train> | env; | num-ids: | memory; | enva
T num-ids: { memory:

In this production, the subseripts on the attribute names distinguish different instances of
attributes of the same type. Attributes distinguished in this way can have different values.
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[ATO1]  prim-mode [primary model
values* boot and .nt
CAT023] refs [ length of reference chainl
values positive integers .
constants zeno-nefs = 0
one-ref =1
action symbols add one re #refsl *refsz
implies refs2 = refs1 + 1
trefs trefs
subtract one ref N 2
wmplies refsz = refs1 -1
CATO03] name [name of variablel
values arbitrary length character strings
constants A, B, ..., 2
action symbols- concatenagte +name1 0name2 fname3
wmplies name3 is the concatenation of
name with name
1 2
CAaT04] env [environment, i.e "symbol table"]
values: sets of triples of the form (name, prim-mode, refs)
constants empty-env = @
action symbol. ingert declaration tenv1 +name +prim-mode +refs fenv2
wmplies env = env1 ¢ {(name,prim-mode,refs)}
2
[AT05] value [boolean, integral, or reference value]
values: unton of boolean, integral, and name
CAaT063] stored-value
values:* union of value, and {undefined}
[AT07] boolean
values true and false
action symbols. or &booleanl #booleanZ +boolean
wmplies boolean3 = boolean1 v booleanZ
and Jbooleanl Haoolean2 tboolean
wmplies boolean3 = booiean1 A boolean2
[ATo8] integral
values. positive integers
constants: ¢, 1, ..., 9, 10
n5 = implementation definea mazimum value for integral
values
action symbols. add +Lntegra11 *Lntegralz tintegral
3

implies if integrall + integra12< n
then integr413 = zntegrall + zntegral2
otherwise implementation defined result
multiply Wzntegrall %tntegralz tintegral
implies if zntegrall x Lntegralz< :5
then integral3 = zntegrall x zntegralz

othervise implementation defined result

TABLE 5.2. DEFINITION OF ATTRIBUTES AND ACTION SYMBOLS
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[AT08] continued
comparg egua anegrall %unfegralz tbootean
implies 1f Infegra|1 = ln‘regral2
then boolean = true

otherwise boolean = false

compare not egual +integral &nn+egralz tboolean
1
implies tf lnfegra!l = in*egralz
then boolean = thrue
otheruise boolean = fafse

[AT09] memory [memory statel
values sets of pairs of the form (name, stored-vaiue) N
constant empty-memory = @
action symbol. ing) gé variable *memory1 +name fmemory2
implies memory == memory v {{name,undefeined )}
[ATt0] prog-length [program length (implementation defined)]
constant no implementation defined maximum
CATIH] num-1ds [number of irdentifiers declared]
values posttive integers
constants zeno-4ds = 0
n_ = wmplementation defined maximum
2
action symbol. add one id *num-:ds1 tnum-i1ds M-1ds
—_ = 2
implies num-lds2 = num-ldsl + 1
[aT12] num-digits [rumber of digits in a constant denotation]
values positive integers
constants one-deget = 1
n_ = implementation defined maximum
action symbol add one digit 0num-d|g|1‘s1 +num—d|g|1’s2
wmplies num-diglfs2 = num-dlgcfsl + 1
[AT13] num-letters [number of letters in an identifier]
values poaitive integers
constants one-Letten = 1
n = implementation defined mazimum
4
action symbol add one letter +num-le1+ersl +num—leffer52
implies num-leﬂers1 = num-teﬁers2 + 1

Additional Data Type for the Execution Phase

The global state space is a product of a memory state and two file states for the input and output.

[AT14] frle [content of the wnput or output filel

values sequences (vl, Vgs +oes vn) where n = 0 and the
vy (1s1sn) are of type integral or boolean

constants () = the empty sequence [file containing only an end
of file mark]

TABLE 5.2.—Continued
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Additional Actions for the Execution Phase

(a) Interaction with the global memory state
Execution of LOAD  ¥name &sfored-valuel
& t e global memory

& stored value2 # undefined)
then stored-value = stored value

othervise execution error [undefined variable reference)

1f (3t) (t=(name, s*ored—valuez))

execution of STORE ¢name ystored-value
(name, sTored-valuez) e global memory . ¢ ro )
= - {{name, stored-value) Y} v
2 L lobal memory = (global memory, .. ..
fpties ‘ after ( {(name, stored-valuey)}
(the stored value of the variable name is replaced by sfored-valuelj

(b) Interaction with global input file state
Execution of READ INTEGRAL tvalue

1f wnput file

before = (vl, vz,...,vn) & n z 1

then +f v s of type integrat
1

then value = v1 and input f"eafTer = (vz,...,vn)

otherwise execution error [incompatible input data typel
otherwtse execution error [attempt to read beyond end of input filel
Execution of READ BOOQLEAN tvalue

if wnput file = (ul,uz,...v ) & n 21

before n

then if v] 18 of type boolean

then value = ul and input f'leaffer = (vz,...,vn)

otherwise execution error [incompatible input data type]
otherwise execution error [attempt to read beyond end of input file]

{e) Interaction with global output file state
Ezxecution of WRITE INTEGRAL +¥vailue

if output fllebefore = (v‘,...vn) & n < ne

(v seesVs value)

then output fuleaHer = .

otherwise execution error [implementation defined size of output file exceeded]

Ezecution of WRITE BOOLEAN vvalue

if output f'lebefore = (ul,...,vn) & n < ns

then output file (vl,...,vn, value)

atter =

otherwise erecution error [implementation defined size of output file exceeded]

(d) Action symbols for spectfying non-sequential execution

LOCATE +label [global state unchanged, Llocates a unique label to which
the branching action symbol can be connected; the next
action symbol to be executed ie the next one in sequencel

BRANCH +label [global state unchanged, the next action symbol to be
evecuted ie the locate symbol of the same labell]

BRANCH ON FALSE +value +label
[global state unchanged, tf value = false then the next
action symbol to be execution 18 the locate symbol of the

same label, otherwise the next action symbol i1n sequence
will be executed]

TABLE 5.2.—Continued
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Any order of evaluation of the attributes that leads to well-defined values in the deriva-
tion tree is allowed. If we take the second alternative in [AG02], the following sequence of
evaluation will be followed for the env attribute:

1) the value env, is inherited by <dcl train> on the left side of the production;

2) this value is passed down to <declaration> and the synthesized attribute value of

env; is obtained from the subtree of <declaration>;

3) the value of env; is then passed down to <del train> on the right side of the produc-
tion, and the value of env. is obtained as a synthesized attribute of the right side,
<del train>;

4) the value of env; is then passed up as a synthesized attribute of <del train> on the
left side of the production.

This process is illustrated in Figure 9, where part of the derivation tree for a declare
train with more than one declaration is represented. The solid lines indicate the syntactic
structure of the derivation tree, and the broken lines show the transfer of values of the env
attribute between the nodes as specified by the productions.

VA

<dcl train> +env tenv
'

/ \
/———‘———_’ S — -
{
e e e | e e | s
Y . \\
<declaration> Yenv tenv e <dcl train> ‘env tenv

& A y !

I l <declaration> +Yenv +e'nv

| I

Figure 9. Partial derivation tree for <del train> showing evaluation of env attribute.

Action Symbols

In a production where the evaluation of an attribute value requires more than a simple value
transfer, action symbols are used. In the attribute grammar, action symbols are always
shown with underlined names. The meaning of the actions and their attribute values are
defined informally in Table 5.2.

A simple example of the use of action symbols is shown in [AG05]:

[AGO5] <{mode> | prim-mode 1 refs;
::= bool

give value to attribute lbool T prim-mode
give value to attribute |one-nef] refs;

| int
give value to attribute |.int { prim-mode
give value to attribute [one-1ef T refs;

| ref
<{mode> 1 prim-mode 1 refs,
add one ref | refs; | refs;
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The category <mode> has two synthesized attributes: prim-mode and refs;. In the first
two alternatives of [AG0S5], values are given to these attributes by means of the action sym-
bol, give value to attribute, which denotes a function that takes a value, which is in this
case a constant, and 1t returns an attribute with that same value. The attribute refs repre-
sents the length of the reference chain of a variable. The action symbol:

give value to attribute | one-ref Trefs:

defines the value of the attribute refs; to be a reference chain of length 1. In the third al-
ternative, the action symbol:

add one ref | refs; 1 refs,

defines the length of the reference chain represented by refs; to be 1 greater than that rep-
resented by refs,.

An example of the use of action symbols and the value-passing mechanism is shown in
Figure 10. This diagram depicts the sequence of attribute evaluations for obtaining the
value of the env attribute in the derivation tree for the ASPLE program:

begin
tnt A;
end

As before, only those attributes that contribute to the evaluation of the env attribute are
ncluded in the figure.

<program>

s s ek A

’
<del train> empfy-env env i <st train> Snv end

<declaration> env env (A, <nt, one-nef)
’ ’

\ e e = — = —— —-
= R e o = — )
- |
- — e o I e e s - — - — — v
o = = R - = = —— o e — - - — \ l
<mode> prim-mode refs <1d list> env prim-mode refs env
~ i - — — \\
I \ <deciared 1d> eliw prim-mode refs env
A ~
nt ive value 4nt pr:‘m-mode fve value one-nef refs SN0
dlve value 4 9ve valde \ SOS
o attribute g’ o attribute Ny ~ SN G
- — e =N - —— NoOS
/ N N
1 prim=- )
<id> name insert env_ name mode refs eqv
declaration b L LJ

<tdentifier> name

<letter> name
o

-

N

A give vaiue A ndme
to attribute ‘\,/

Figure 10. Derivation tree for attribute grammars.
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So far we have only considered action symbols whose attributes can be evaluated during
the translation phase. In the following examples, we encounter action symbols that are also
part of the translation of the program and that are exccuted during the subsequent execu-
tion phasc. Those attribute values and action symbols that in general can only be evaluated
during the cxceution phase are written in upper casc characters. An example occurs in the
definition of the loop statement in [AG11}:

[AG11] loop stm> | env ::= while
LOCATE 1 label,
{exp> | env | zero-nefs T prim-mode | VALUE
BRANCH ON FALSE | VALUE | label;
do
{stm train> | env
end
BRANCH | label;
LOCATE 1 label.

condition: prim-mode = bool

The last attribute of <exp> represents the value of the actual cxpression. This attribute is
written in upper casc characters to show that it can only be evaluated during the execution
of the program. The action symbols written in upper case characters can be regarded as
part of the translated program. The left-to-right order of the italic terminals in the deriva-
tion tree specifies the written form of the source program. Similarly, the left-to-right order
of the upper case action symbols in the derivation trec specifies the translation of the source
program. During execution of the program, these symbols are interpreted strictly according
to their written sequence, except for deviations caused by the BRANCH actions. These
actions change the execution sequence, making use of label attributes that are evaluated by
the LOCATE action. In the case of the loop statement, the control flow during the execution
phase 1s as indicated in Figure 11.

false

Figure 11. Control flow in loop statement.

The first three attributes of the category <exp> can be cvaluated during the translation
phase. The second attribute indicates the length of the reference chain in the mode of the
expression value. If necessary, a sufficient number of dereferencing opcrations have to be
performed. In the casc of the loop statement, this attribute is set to zero-neds, since an actual
primitive value is required. The value of the synthesized attribute prim-mode is the primi-
tive mode, that is, integral or Boolean, of the expression value, which is determined in the
subtree of the node <exp> according to the inherited attribute env and the program text.
The condition specifies that this primitive mode must he Boolean.
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Dereferencing is described by the production [AG22]:

[AG22)
<{deref action)> | name | refs; | refs: 1 VALUE,
::= give value to attribute | name 1 VALUE,
condition: refs; = refs,
[no dereferencing is necessary)
| LOAD | name 7 VALUE,
[an undefined stored value gives rise to an error condition]
[one level of dereferencing is done)
subtract one ref | refs; | refs:
[refs, will always be greater than zero)
{deref action> | VALUE; | refs; | refs: { VALUE,
condition: refs, > refs;
[several levels of dereferencing can be dome recursively.
The number of times the recursion i8 invoked depends on
the difference of the values of refs) and refs;]

The attributes name and refs; represent an identifier name and the value of the length of
its reference chain, respectively, refs, represents the length of the reference chain required
for the mode of the value to be obtained. The subtree of <deref action> performs the neces-
sary dereference operations and returns the value as a synthesized attribute. This subtree
does not generate any terminal source symbols. However, it generates LOAD actions for
the execution phase. The structure of the subtree, and the number of LOAD actions gen-
erated, depend on the values of the attributes refs; and refs,. Similarly, the choice of the
appropriate alternative of the production [AG15], and others, depends on the value of the
jnherited attribute, prim-mede. For example, consider the program:

begin
nt A;
ref int B;
A =0,
B:=A;
while (A # 12) do
A:=A+2
end;
output B
end

Using the productions of Table 5.1, after all possible attributes on the derivation tree of
the program have been evaluated during the translation phase, the only action symbols
that remain for the execution phase are:

STORE | ‘4’ |0

STORE | ‘B’ | ‘4’

LOCATE 1 label,

LOAD | ‘A’ 1 value;

COMPARE NOT EQUAL | value;, | 712 1 value,
BRANCH ON FALSE | value, |} label;
LOAD | ‘4’ 1 value;

ADD | value; | 2 T value,

STORE | ‘4’ | value,

BRANCH | label;

LOCATE 1 label,

LOAD | ‘B’ 1 values

LOAD | value; T valueg

WRITE INTEGRAL | values
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This sequence of action symbols with the indicated attribute values is the translation of the
source program and represents the meaning of the program.

As has been shown, the attribute grammar approach that uses action symbols relies on
the existence of some other target language for specifying semanties. In the case of ASPLE,
this target language consists of the action symbols informally described in Table 5.2. They
operate over three global variables: the memoeory state, the input file state, and the output
file state. These states are changed by a number of actions that take place during the execu-
tion of the program.

6. CRITIQUE OF THE DEFINITION TECHNIQUES

The four formal definitions of ASPLE illustrate a variety of models whose usability can be
compared. Any full definition of a programming language must supply information to a
range of users. Language designers need to review their work and to assess the full impact
of their design decisions. Language implementors need a precise formulation of a language as
part of their job description. Writers of textbooks and reference manuals need information
at all levels, from the general to the particular. Serious programmers need to resolve detailed
questions about facets of the language that are often omitted from informal language defini-
tions.

To all these users, the formal definition must be a definitive source of answers to their
questions. Beyond this essential minimum function, the quality of the definition is critically
determined by the ease with which users can obtain the required information. As an illustra-
tion, Table 6.1 lists six questions that might be posed about ASPLE. To compare the four
definition techniques we will consider Question 4:

In this example ASPLE program, is the assignment of an integer constant to the variable X valid?

begin
ref nt X;
X:=2
end

and follow through the process of obtaining answers from each definition. We will also look
at each definition in a critical light.

W-grammars

Since the question involves the assignment statement, we first look for a hyperrule for as-
signments. Hyperrule [HR10] contains the protonotion for assignment:

[HR10] TABLE TAG becomes EXP val assignment:
TABLE ref MODE TAG identifier,

TABLE EXP MODE value.

This hyperule shows that the right side of an assignment statement must be derivable from

TABLE EXP MODE value
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1) General question about the language:
What data types are available in ASPLE?

2) More detailed question on the data types of the language:
Are mixed mode expressions permitted in ASPLE?

3) Detailed question on the context-free syntax of the language:
In this example ASPLE program, is the semicolon after the second input statement correct?
begin |
it X
input X;
while (X == 0) do
output X;
input X;
end
end

4) Detailed question on the context-sensitive syntax of the language:
In this example ASPLE program, is the assignment of an integer constant to the variable X

valid?
begin
ref int X;
X :=2
end

5) Detailed question on the semantics of the language:
In this example ASPLE program, is the disjunction between two variables, one of which has
the value true and the other has an undefined value, legal?
begin
bool A, B;
A = lrue;
if (A + B
then B := true
else B := false
£

end

6) Detailed question on the implementation defined features of the language:

In this example ASPLE program, is the value printed defined by the language or is it
dependent on the implementation?

begin
mt X, Y;
X :=1; .
Y:=1;
while (X = 1000) do
output Y;
X:=X+41;
Y:i=Ys2
end
end

TABLE 6.1 SampLE QuEsTIONs oN ASPLE
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Following this form takes us through several hyperrules, [HR17], [HR19], and [HR20]:

HR17) TABLE EXP MODE value:
TABLE EXP MODE factor.

[HR19] TABLE EXP MODE factor:
TABLE EXP MODE primary.

{HR20] TABLE EXP MODE primary:

strong TABLE EXP MODE identifier;
TABLE EXP MODE value pack;
MODE EXP denotation,

where MODE is INTBOOL;
TABLE EXP compare pack,

where MODE is bool.

Since the right side of the assignment is a constant, a “denotation” in the W-grammar, we
choose the third alternative. The uniform replacement rule applied to hyperrule [HR10]
causes MODE in hyperrule [HR20] to be replaced by the declared mode of the target of the
assignment. The phrase

where MODE is INTBOOL

from hyperrule [HR20] specifies that this mode must be nt or bool. Hence the mode ref int
is not permitted for X and the assignment statement is illegal in the given program.

Conceptually, the W-grammar is the simplest of the formal systems presented here. All
aspects of the definition are covered by a single formalism that is based on the familiar
notion of context-free grammars. However, this one formalism has been pushed to an ex-
treme. The reader must simultaneously follow protonotions down several branches of the
tree keeping in mind many possible replacements and combinations.

The expression of a complete definition in a formalism based entirely on symbol manipu-
lation leads to some unnatural constructions. For example, all arithmetic must be performed
on sequences of one’s. This technique is at first difficult to understand. Only after con-
siderable thought can the reader make the appropriate mental abstraction. However, it
should be noted that the W-grammar definition is the only one of the four that defines the
arithmetic operations fully. Once the reader has verified the way that the arithmetic works,
plus and times serve as abstractions for that part of the derivation tree.

The use of a generative grammar for the definition of semantics is not followed exclu-
sively. There are points at which this approach has been abandoned and the explicit detec-
tion of errors is used for clarity. For example, in hyperrule {HR75]:

[HR7 5] where NUMBER matches INTBOOL:
where INTBOOL is int;
where INTBOOL is bool,
[¢nput error] abnermal termination.

a mismatch of types during input is specifically trapped. The reasons for the disti‘nction
between explicit and implicit detection of errors is a property of the definition and is not
concerned with the semantics of ASPLE.
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Production Systems

Here, we go directly to the production that deals with assignment statements:

[rso71]
stm ASGT STM <id ;= exp> & LEGAL <*:p>
«— LEGALKid:p> & LEGAL<Lexp:p> &
dm; = DERIVED EXP MODE(id:p) & dm, = DERIVED EXP MODE(exp:p) &
PRIM MODE(dm;) = PRIM MODE(dm,) &
[The primitive modes of 1d and exp in p must be identical]
n; = NUM REFS(dm;) & n, = NUM REFS(dm,) & n; < nf + 1.
[PThe mode of id must be oblatnable from the mode of exp by deferencing exp)

From this we see that the primitive mode of the identifier must be identical to the primitive
mode of the expression. We also see that n,, the value of NUM REFS of the declared mode
of the identifier, must be less than or equal to n, 4 1, the value of NUM REFS of the de-
clared mode of the expression plus 1. The value of NUM REFS for the identifier X de-
clared as ref oni is derived from the following rules:

[Ps42] DERIVED MODE (ini) = REF INTEGER.
[Ps44] DERIVED MODE(ref m) = REF dm
— dm = DERIVED MODE (m).
[Ps45] NUM REFS(INTEGER) = 0.
[PS47] NUM REFS(REF dm) = 1 + NUM REFS(dm).

From these we see that the value of NUM REFS for an identifier is one more than the
number of oceurrences of ref in the declaration for the identifier. For X, the value of n is 2.
The value of NUM REFS for the expression, an integer constant, is obtained from:

[Ps37] DERIVED EXP MODE((int:p) = INTEGER.
[Ps45) NUM REFS(INTEGER) = 0.

The value of n, is thus 0. Applying these values to the relation in production [PS07]:
n =2 n, =0 n;,>n;+1
the assignment is shown to be illegal in the given context.

The notation for Production Systems is based on a combination of generative and analytic
concepts. Sets are defined generatively and the properties are defined analytically. This
interplay leads to definitions that are short and provide some degree of abstraction. Further-
more, the use of a static environment leads to a conceptually clear definition of the context-
sensitive requirements. If the user is only concerned with the context-free syntax, only the
left-most conclusion in each production need be considered and all premises and predicates
involving an environment may be ignored. One debit with Production Systems is that they
have not been used for the direet definition of semantics. The user is therefore required to
learn another method.

The axiomatic approach to semantics is based primarily on generative concepts and does
not rely on any machine model of execution. It concentrates on the essence of semantics by
specifying only relevant assertions about objects and operations. The approach also has the
advantage of giving the user tools for proving properties about programs. The major debit
is the need to make mental leaps in order to select the relevant assertions. Since the process
is generative, the detection of errors is implicit rather than explicit.
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Vienna Definition Language

Since the legality of the statement can be determined statically, we start with the function
trans-asgt-stm [T05] in the Translator:

[ros] trans-asgt-stm(t) =
valid-mode-for-assignment(t) — translate-assignment(t)
true - error

[modes not compatible for assignment]

Here we see that the predicate function valid-mode-for-assignment is used to check the
legality of the statement before translation. This predicate:

[r25}
valid-mode-for-assignment(t) =
(primitive-mode(s1(t)) = primitive-mode(s3(t)) &
(ref-chain-length(s;(t))- 1 < ref-chain-length(s3(t)))
[true if the mode of the right side of an assignment statement is valid for assignment to the left side)
fwhere: is=c-id (s1(t)) and is-c-exp(s3(t))]

requires that the primitive-mode of the identifier on the left match the primitive-mode of
the expression on the right. Also, the value of ref-chain-length for the identifier must
not be greater than 1 plus the value of ref-chain-length for the expression. From the
definition:

[Ti9] ref-chain-length(t) =
is-e-id(t) — slength(s;-mode-of-id(t)) + 1
[this is an elementary object salisfying is-integer]
true -1
[where: s1-mode-of-id(t) is the list of ref’s in the declaration of the identifier t]

the value of ref-chain-length for an identifier is one more than the number of occurrences
of ref in its declaration. For the variable X, this value will be 2. The value of ref-chain-
length for any other type of expression, including constants, is 0. Thus the relationship in
valid mode-for-assignment does not hold and the statement is rejected as being illegal
in the context.

The VDL approach is based entirely on the model of a hypothetical machine. The concept
of a computer is familiar to many users and an abstract machine provides a precise and
readily grasped metaphor. Because of the resemblance between the hypothetical machine
and real computers, implementation restrictions can be introduced naturally.

A VDL definition is split into two parts, the Translator and the Interpreter. For many
languages there is no sharp distinction between the statically and dynamically applied
rules, and the writer of the VDL definition is forced to superimpose this structure. The di-
viding line will generally be drawn in order to make both parts as clear as possible, and in a
large language, there are bound to be some arbitrary decisions.

One debit of the approach is that the use of the hypothetical machine brings extraneous
detail into the definition that tends to obscure its meaning. For example, the mechanism for
passing values from one operation to another in the Interpreter has no direct connection
with ASPLE semantics. The mechanistic nature of this definition technique provides little
help in deriving general properties of language constructs. The user can only attempt to
draw conclusions about the general behavior of these constructs from specific examples.
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For most programming languages it is not too difficult to draw these conclusions. The ex-
plicit detection of errors by the interpreter helps the user, particularly the implementor, to
understand the language more easily.

Attribute Grammars

The production for the assignment statement is [AG09]:

[aGo9] <asgt stm> [env : := <used id> | env T prim-mode; {refs; { name i

subtract one ref | refs; {refs;
<exp> | env |refs; | prim-mode;  VALUE
STORE | name | VALUE
condition: prim-mode,; = prim-mode;
[primitive modes must be compatible for assignment)

The syntactic category <used id> is specified in production [AG21]:

[AG21) <used id> | env 1 prim-mode {refs | name
::= <id> | name
condition: (name, prim-mode, refs) ¢ env

This shows that the number of references, the value of the attribute refs, associated with the
identifier is to be obtained from the environment. This value is specified in [AG05]:

[AGO5] {mode> 1 prim-mode T refs;
::= bool

give value to attribute | bool | prim-mode
give value to attribute | one-nef 1 refs,

| int
give value to attribute | .int { prim-mode
give value to attribute | one-nef 1 refs,;

| ref i
<mode> 1 prim-mode 1 refs:
add one ref | refs; {refs;

The value of refs is one greater than the number of occurrences of ref in the declaration.
Thus the value of the attribute refs associated with cused id> in production [AG09] is 2.
This is reduced by 1 by the action symbol subtract one ref to give 1 as the value of the
attribute refs passed to the production for <exp>. Following this attribute through the
productions for <exp> and <factor>, we arrive at the production for <primary> [AG20]):

[AG20] {primary> | env | refs, 1 prim-mode { VALUE
;= <used id> | env | prim-mode 1 refs; | name;
<deref action> | name, | refs; | refs; { VALUE
[some dereferencing may possibly be donel
| <constant> | prim-mode { VALUE
eondition: refs; = zen0-12s
I (
{exp> | env lzero-refs] prim-mode 7 VALUE
)

‘condition: refs, = zero-refs
I C

<{compare> | env | VALUE

)

—give value to attribute | bool T prim-mode
condition: refs; = zew-1e4s
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Since the right side of the assignment is a constant, the second alternative applies and the
condition stipulates that refs =zero-1eds. Since the value of refs, is 1, the assignment
statement is illegal in the given context.

This method clearly shows the underlying context-free syntax of the language. By over-
laying the evaluation of attributes on the parse tree, the interrelation between the various
parts of the tree is seen. Clarity is helped by including the attributes in the productions,
thus keeping the information localized.

Attribute Grammars are limited in the amount of attribute evaluation that can be per-
formed directly and by the lack of a method for defining the semanties. These require further
action symbols. While action symbols correspond most closely to an actual implementation
and may appeal to writers of compilers, the formal definition of the action symbols is trouble-
some. There is no way that this can be done within the Attribute Grammar system, though
it would be possible to replace the action symbols with some other more formal system.
This would require the user to learn a second formalism to understand the definition.

Evaluation

A comparative evaluation of the four techniques is indeed subjective. One way of presenting
such an evaluation is in a tabular form, similar to that used for computer system selections
or for reports on cars, shavers, and other objects whose characteristics are mainly assessed
subjectively. Table 6.2 was obtained by combining the views of the authors of this paper.
Although there was some disparity between these views, the disagreement was not large,
and no great feat of compromise was required in deriving the table.
Some remarks on this table are in order.
® Completeness. By this we mean the ability of a formal system to define the entire
programming language. As we have presented the formal definitions here, only the
Attribute Grammars are incomplete, though they could have been coupled with
axioms in the same way that we have done for Production Systems.
o Simplicity of model. There are two aspects to this criterion: the initial difficulty of
learning the model, and the effect of the model on the clarity of the definition itself.
Here, we only evaluate the first of these. The second is subsumed in other criteria.
It could be argued that the initial difficulty of learning the technique is of relatively
minor importance since this is only a “one time expense.”
® Clarity of defined syntax. In particular, this includes the definition of the context-
sensitive requirements. We believe that isolation of these requirements from the
context-free specification and semantics is important to clarity.
® Clarity of defined semantics. This is the category in which we had the greatest di-
vergence of opinion. Each of us found the technique we knew the best to be the
clearest.
®  Ability to show errors. It is not clear how valuable it is for a definition to show errors.
From the theoretical point of view, a definition need only define the class of legal
programs and their meaning. From the practical point of view, however, many of
the questions that a definition will have to answer will be of the form shown in
Table 6.1 and the explicit indication of errors is helpful in providing replies. It is
probably of assistance to compiler writers that the definition show errors in the source
program explicitly.
® Ability to show details. This criterion measures the ease with which the user can find
detailed information about the language.
® Ease of modification. This is of great importance during the design of the language,
but much Iess so once the design is compiete.
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DUCT AXIOMAT VIENNA ATTRIBUTE
W-GRAMMARS | PRERTEHON | AR ROACH DEFINITION | ‘GramMARS
COMPLETENESS + NA NA + _
SIMPLICITY OF
MODEL + + 0 - 0
CLARITY OF
DEFINED SYNTAX - + NA 0 +
CLARITY OF DE-
FINED SEMANTICS 0 NA 0 ;0 0
ABILITY TO SHOW
ERRORS IN PRO- - + o + 0
GRAMS
ABILITY TO SHOW
DETAILS 0 + 0 + 0
EASE OF MODIFICA-
TION 0 0 0 0 0
RATINGS:
+ Positive
0 Neutral
— Negative

NA Not Applicable
TABLE 6.2 ComBINED AUTHOR RATINGS OF THE DEFINITION METHODS

7. FORMAL DEFINITIONS IN GENERAL

At present, most formal definitions are used exclusively by humans. The direct machine
use of formal definitions is limited and is used primarily for the automatic construction of
recognizers from context-free grammars. Even with great advances in compiler technology,
humans will remain the major users of formal definitions.

While it may seem to be trite to remark on the importance of clarity in formal definitions
for human use, the subject of clarity has hitherto received but scant attention.
Completeness and conciseness have generally been considered to be of greater importance.
Completeness is indeed important, so important that it must be assumed in any formal
definition without special comment. Conciseness, while sometimes helpful to clarity, is a
dangerous mistress. She is the siren that lures programmers onto shoals of octal coding and
the APL one-liner.

A comparison of the way our four definitions answer the sample questions shows that
clarity depends critically on the formal model being used, and on what the reader is used to.
However, even with a given formal system, there is still room to exercise the care and talent
of the writer. The method of presentation also plays a vital part in the formal mechanism.

In the preparation of the example definitions in this paper, we have taken care to promote
clarity. Among the principles we have used are:

® introduction of the minimum amount of notation required for the definition of

ASPLE;
® use of abbreviations only where there is & clear gain in readability;
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® separation of context-free, context-sensitive, and the semantic parts of the language

as much as possible;

® arrangement of the tables in a way that makes them easy to read, even at the ex-

pense of almost doubling the conventional space requirement;

¢ selection of mnemonic names that help the reader in making abstractions;

® use of different type styles to separate different types of objects;

® use of comments,

It is clear that for a language of any magnitude, the production of a formal definition
without the aid of some text preparation system is almost impossible. The incidence of
typographic errors will always be too high to produce reliable tables. Even with the small
tables we have produced here, we have had problems of this sort. Had we had access to a
document preparation system with output provided in a choice of type styles, we would
certainly have used it.

It should be remembered that our four definitions describe a toy language only. Even so,
the labor of producing the tables was considerable, requiring at least a week for a first draft
and then a large number of iterations to remove errors and improve clarity. For real pro-
gramming languages, the mass of detail required in any formal definition becomes immense.
A complete understanding and checking of such a definition certainly approaches and may
exceed human abilities.

While there can be little argument about the need for clarity in formal definitions, there
are several topics where debate continues.

What Constitutes a “Valid” Program?

Since a definition provides rules for selecting the set of legal programs from the set of all
possible strings in the language, it is important that the properties of a “valid” or “legal”
program be defined. There are several possibilities; for example, a valid program may be
defined as one with:

1) no context-free syntax errors;

2) no context-free or context-sensitive syntax errors;

3) no syntax errors and whose execution terminates when encountering a particular set of

input data;

4) no syntax errors and whose execution terminates for all possible sets of input data;

5) no syntax errors and whose execution terminates for all possible sets of input data and

produces a ‘““correct’” answer.

In our example definitions, Production Systems and Attribute Grammars go as far as
level 2). VDL and W-grammars include level 3) and the axiomatic approach allows level 4).
However, only the W-grammars, by a requirement for a finite tree, touch on the problem
of termination. A final opinion on this issue is left open.

How Should a Formal Definition Show Errors?

There are two fundamentally different ways that formal definitions specify “errors.” A
definition may be analytic, rejecting erroneous programs explicitly, or the definition may be
generative, making it impossible to generate an erroneous program. From the user’s point of
view, the generative method leaves the question of whether a program is really erroneous or
whether the user has not been able to think of a way to use the grammar to generate the
program. None of our sample definitions takes a pure position in this matter. For example,
VDL rejects programs with context-sensitive or semantic errors explicitly, but uses a
generative approach that prevents the construction of a program with a context-free syntax
error. The W-grammar is mainly generative but detects some semantic errors explicitly.
Of our four definitions, the VDL formalism shows errors the most clearly.
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How Should Definitions Show Implementation Restrictions?

Two subsidiary questions are: 1) How should definitions attempt to indicate the places
where an implementation may introduce restrictions?; and 2) Furthermore, is it possible to
foresee all such restrictions?

The second question begs the prior question, whether a language definition should allow
any implementation-defined restrictions. If the language is completely specified by the de-
signer, the implementor may be forced to take uneconomic expedients to meet the specifi-
cation exactly. It may be a contractual condition that the language definition be completely
implemented.

With the technology available at this time, it seems that the implementor must be left
with several points at which he is free to make decisions. We contend that these implementa-
tion-defined points, if any, should not be ignored, but explicitly shown in the formal defi-
nition. It is important to users of a language, as well as to implementors, to know what can
be counted on in all implementations. The question whether it is possible to foresee all such
restrictions is still open. Currently, the closest to a formal definition for an official language
standard is the draft proposed standard for PL/I [E2]. This uses a VDL-like model of an
abstract machine, but the algorithms are expressed more informally in a disciplined style of
English prose. This specification has attempted to mark all the implementation-defined
features by listing 40 of them. However, the definition permits a standard implementation
to make quantitative restrictions that are not included in the list. Much of the reason for
this is not connected with the technology of the definition but with the more practical legal
question of restraint of trade.

8. IMPORTANCE OF FORMAL DEFINITIONS

Because BNF is clear and easy to use, most definitions of programming languages include a
BNTF description of the context-free syntax. This is generally as far as the formal content of
the definitions go. As a result, there is an unfortunate tendency to believe that this is all
that is required of a formal definition. There is an analogous confusion in many textbooks
on compilers where the subject matter is limited to the theory of parsing. In formal defini-
tions, as with compilers, the more difficult parts are the context-sensitive requirements and
the semantics.

It is precisely in the context-sensitive and semantic areas that formalism is needed. There
is generally little argument over the precise syntax of a statement even if there is no formal
description of it. All too often, however, an intuitive understanding of the semantics turns
out to be woefully superficial. It is only when an attempt at implementation (which is, after
all, a kind of formal definition) is made that ramifications and discrepancies are laid bare.
What was thought to have been fully understood is discovered to have been differently
perceived by various readers of the same deseription. By then, it is frequently too late to
change, and incompatibilities have been cast in actual code.

Our example definitions indicate that the technology for full definitions is available but
that there is still much work to do before any notation achieves the level of general ac-
ceptance of BNF. This work must overcome considerable user resistance. For example, the
definition of the proposed standard for PL/I [E2], the VDL definition of PL/1 [L7], and the
W-grammar definition of Arcor 68 [W2] have all received mixed reactions. Resistance to
formal definitions will only be overcome by great attention to the human engineering so that
the general user feels that the definition is understandable by other than formal definition
specialists.

Despite the urgent need for the development of readable formal definitions, formal defi-
nitions must never be thought of as self-contained arenas with no user contacts. The inter-
face with users is the key area where most of the effort is needed. The metalanguage of a
formal definition must not become a language known to only the high priests of the cult.
Tempering science with magie is a sure way to return to the Dark Ages.
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